s-propargylcysteine has been researched along with Inflammation* in 3 studies
3 other study(ies) available for s-propargylcysteine and Inflammation
Article | Year |
---|---|
S-Propargyl-Cysteine, a Novel Hydrogen Sulfide Donor, Inhibits Inflammatory Hepcidin and Relieves Anemia of Inflammation by Inhibiting IL-6/STAT3 Pathway.
Anemia of inflammation (AI) is clinically prevalent and greatly threatens public health. Traditional remedies have raised controversy during clinical practice, calling for alternative therapies. We have recently found that hydrogen sulfide (H2S) inhibits inflammatory hepcidin, the critical mediator of AI. However, due to the chemical property of H2S, there remains an urgent need for a stable H2S donor in AI treatment. Here we reported that S-propargyl-cysteine (SPRC), a novel water-soluble H2S donor, suppressed hepatic hepcidin and corrected hypoferremia induced by lipopolysaccharide. The effects of SPRC were reversed by inhibition of cystathionine γ-lyase, one of the major endogenous H2S synthases. Moreover, SPRC reduced serum hepcidin, improved transferrin saturation, and maintained erythrocyte membrane integrity in a chronic mouse AI model. Consistently, splenomegaly was ameliorated and splenic iron accumulation relieved. Mechanism study indicated that serum IL-6 content and hepatic Il-6 mRNA were decreased by SPRC, in parallel with reduced hepatic JAK2/STAT3 activation. On the whole, our data reveal the inhibition of inflammatory hepcidin by SPRC, and suggest SPRC as a potential remedy against AI. Topics: Anemia; Animals; Cysteine; Disease Models, Animal; Hepcidins; Hydrogen Sulfide; Inflammation; Interleukin-6; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Signal Transduction; STAT3 Transcription Factor | 2016 |
Effects of S-propargyl-cysteine (SPRC) in caerulein-induced acute pancreatitis in mice.
Hydrogen sulfide (H(2)S), a novel gaseous messenger, is synthesized endogenously from L-cysteine by two pyridoxal-5'-phosphate-dependent enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). S-propargyl-cysteine (SPRC) is a slow H(2)S releasing drug that provides cysteine, a substrate of CSE. The present study was aimed to investigate the effects of SPRC in an in vivo model of acute pancreatitis (AP) in mice. AP was induced in mice by hourly caerulein injections (50 µg/kg) for 10 hours. Mice were treated with SPRC (10 mg/kg) or vehicle (distilled water). SPRC was administered either 12 h before or 3 h before the induction of pancreatitis. Mice were sacrificed 1 h after the last caerulein injection. Blood, pancreas and lung tissues were collected and processed to measure the plasma amylase, plasma H(2)S, myeloperoxidase (MPO) activities and cytokine levels in pancreas and lung. The results revealed that significant reduction of inflammation, both in pancreas and lung was associated with SPRC given 3 h prior to the induction of AP. Furthermore, the beneficial effects of SPRC were associated with reduction of pancreatic and pulmonary pro-inflammatory cytokines and increase of anti-inflammatory cytokine. SPRC administered 12 h before AP induction did not cause significant improvement in pancreatic and lung inflammation. Plasma H(2)S concentration showed significant difference in H(2)S levels between control, vehicle and SPRC (administered 3 h before AP) treatment groups. In conclusion, these data provide evidence for protective effects of SPRC in AP possibly by virtue of its slow release of endogenous H(2)S. Topics: Acute Disease; Amylases; Animals; Anti-Inflammatory Agents, Non-Steroidal; Ceruletide; Cysteine; Cytokines; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Gases; Hydrogen Sulfide; Inflammation; Lung; Male; Mice; Pancreas; Pancreatitis; Peroxidase; Time Factors | 2012 |
S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism.
The present study attempts to investigate the effects of S-propargyl-cysteine (SPRC), a sulfur-containing amino acid, on lipopolysaccharide (LPS)-induced inflammatory response in H9c2 cardiac myocytes. We found that SPRC prevented nuclear factor-κB (NF-κB) activation assessed by NF-κB p65 phosphorylation and IκBα degradation, suppressed LPS-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and intracellular reactive oxygen species (ROS) production. Furthermore, incubation of H9c2 cells with SPRC induced phosphorylation of Akt in a time- and concentration-dependent manner. In addition, SPRC attenuated LPS-induced mRNA and protein expression of tumor necrosis factor-α (TNF-α), and mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS). The effects of SPRC were abolished by cystathionine γ-lyase [CSE-an enzyme that synthesizes hydrogen sulfide (H(2)S)] inhibitor, DL: -propargylglycine (PAG), SPRC-induced Akt phosphorylation and TNF-α release was also abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, SPRC also increased LPS-induced down-regulation expression of CSE and H(2)S level in H9c2 cells. PAG abolished SPRC-induced up-regulation of H(2)S level. Therefore, we concluded that SPRC produced an anti-inflammatory effect in LPS-stimulated H9c2 cells partly through the CSE/H(2)S pathway by impairing IκBα/NF-κB signaling and by activating PI3K/Akt signaling pathway. Topics: Animals; Cell Line; Cysteine; Hydrogen Sulfide; Inflammation; Lipopolysaccharides; Myocytes, Cardiac; Rats | 2011 |