s-propargylcysteine has been researched along with Fibrosis* in 2 studies
2 other study(ies) available for s-propargylcysteine and Fibrosis
Article | Year |
---|---|
A Novel Liposomal S-Propargyl-Cysteine: A Sustained Release of Hydrogen Sulfide Reducing Myocardial Fibrosis via TGF-β1/Smad Pathway.
S-propargyl-cysteine (SPRC; alternatively known as ZYZ-802) is a novel modulator of endogenous tissue H. Two liposomal formulations of ZYZ-802 were prepared by thin-layer hydration and the morphological characteristics of each liposome system were assessed using a laser particle size analyzer and transmission electron microscopy. The entrapment efficiency and ZYZ-802 release profiles were determined following ultrafiltration centrifugation, dialysis tube and HPLC measurements. LC-MS/MS was used to evaluate the pharmacokinetic parameters and tissue distribution profiles of each formulation via the measurements of plasma and tissues ZYZ-802 and H. The liposomal formulations of ZYZ-802 have enhanced pharmacokinetic and pharmacological properties in vivo. This work is the first report to describe the development of liposomal formulations to improve the sustained release of H Topics: Animals; Antioxidants; Cardiotonic Agents; Cystathionine gamma-Lyase; Cysteine; Disease Models, Animal; Fibrosis; Heart Failure; Hydrogen Sulfide; Liposomes; Male; Myocardium; Rats, Sprague-Dawley; Signal Transduction; Smad Proteins; Transforming Growth Factor beta1 | 2019 |
Cardioprotective effects of a novel hydrogen sulfide agent-controlled release formulation of S-propargyl-cysteine on heart failure rats and molecular mechanisms.
Heart failure (HF) is one of the most serious diseases worldwide. S-propargyl-cysteine (SPRC), a novel modulator of endogenous hydrogen sulfide, is proved to be able to protect against acute myocardial ischemia. In order to produce more stable and sustainable hydrogen sulfide, we used controlled release formulation of SPRC (CR-SPRC) to elucidate possible cardioprotective effects on HF rats and investigate involved mechanisms on apoptosis and oxidation.. Left coronary artery was occluded to induce HF model of rat. The survival rats were randomly divided into 7 groups after 24 hours and treated with drugs for 6 weeks. Echocardiographic indexes were recorded to determine cardiac function. TTC staining was performed to determine infarct size. Plasmatic level of hydrogen sulfide was detected by modified sulfide electrode. Activity of enzyme and expression of protein were determined by colorimetry and Western blot, respectively.. The cardioprotective effects of CR-SPRC on HF rats were confirmed by significant reduction of infarct size and improvement of cardiac function, with better effects compared to normal SPRC. CR-SPRC modulated antioxidant defenses by preserving levels of GSH, CAT and SOD and reducing CK leakage. In addition, CR-SPRC elevated ratio of Bcl-2/Bax and inhibited activity of caspases to protect against myocardial apoptosis. The cardioprotective effects of CR-SPRC were mediated by hydrogen sulfide.. All experiment data indicated cardioprotective effects of CR-SPRC on HF rats. More importantly, CR-SPRC exerted better effects than normal SPRC in all respects, providing a new perspective on hydrogen sulfide-mediated drug therapy. Topics: Animals; Apoptosis; Cardiotonic Agents; Cysteine; Delayed-Action Preparations; Disease Models, Animal; Fibrosis; Heart Failure; Heart Ventricles; Hydrogen Sulfide; Male; Oxidative Stress; Rats | 2013 |