s-propargylcysteine and Disease-Models--Animal

s-propargylcysteine has been researched along with Disease-Models--Animal* in 7 studies

Other Studies

7 other study(ies) available for s-propargylcysteine and Disease-Models--Animal

ArticleYear
A Novel Liposomal S-Propargyl-Cysteine: A Sustained Release of Hydrogen Sulfide Reducing Myocardial Fibrosis via TGF-β1/Smad Pathway.
    International journal of nanomedicine, 2019, Volume: 14

    S-propargyl-cysteine (SPRC; alternatively known as ZYZ-802) is a novel modulator of endogenous tissue H. Two liposomal formulations of ZYZ-802 were prepared by thin-layer hydration and the morphological characteristics of each liposome system were assessed using a laser particle size analyzer and transmission electron microscopy. The entrapment efficiency and ZYZ-802 release profiles were determined following ultrafiltration centrifugation, dialysis tube and HPLC measurements. LC-MS/MS was used to evaluate the pharmacokinetic parameters and tissue distribution profiles of each formulation via the measurements of plasma and tissues ZYZ-802 and H. The liposomal formulations of ZYZ-802 have enhanced pharmacokinetic and pharmacological properties in vivo. This work is the first report to describe the development of liposomal formulations to improve the sustained release of H

    Topics: Animals; Antioxidants; Cardiotonic Agents; Cystathionine gamma-Lyase; Cysteine; Disease Models, Animal; Fibrosis; Heart Failure; Hydrogen Sulfide; Liposomes; Male; Myocardium; Rats, Sprague-Dawley; Signal Transduction; Smad Proteins; Transforming Growth Factor beta1

2019
S-Propargyl-Cysteine, a Novel Hydrogen Sulfide Donor, Inhibits Inflammatory Hepcidin and Relieves Anemia of Inflammation by Inhibiting IL-6/STAT3 Pathway.
    PloS one, 2016, Volume: 11, Issue:9

    Anemia of inflammation (AI) is clinically prevalent and greatly threatens public health. Traditional remedies have raised controversy during clinical practice, calling for alternative therapies. We have recently found that hydrogen sulfide (H2S) inhibits inflammatory hepcidin, the critical mediator of AI. However, due to the chemical property of H2S, there remains an urgent need for a stable H2S donor in AI treatment. Here we reported that S-propargyl-cysteine (SPRC), a novel water-soluble H2S donor, suppressed hepatic hepcidin and corrected hypoferremia induced by lipopolysaccharide. The effects of SPRC were reversed by inhibition of cystathionine γ-lyase, one of the major endogenous H2S synthases. Moreover, SPRC reduced serum hepcidin, improved transferrin saturation, and maintained erythrocyte membrane integrity in a chronic mouse AI model. Consistently, splenomegaly was ameliorated and splenic iron accumulation relieved. Mechanism study indicated that serum IL-6 content and hepatic Il-6 mRNA were decreased by SPRC, in parallel with reduced hepatic JAK2/STAT3 activation. On the whole, our data reveal the inhibition of inflammatory hepcidin by SPRC, and suggest SPRC as a potential remedy against AI.

    Topics: Anemia; Animals; Cysteine; Disease Models, Animal; Hepcidins; Hydrogen Sulfide; Inflammation; Interleukin-6; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Signal Transduction; STAT3 Transcription Factor

2016
S-propargyl-cysteine attenuates inflammatory response in rheumatoid arthritis by modulating the Nrf2-ARE signaling pathway.
    Redox biology, 2016, Volume: 10

    Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder. Hydrogen sulfide (H

    Topics: Animals; Anti-Inflammatory Agents; Antioxidant Response Elements; Arthritis, Rheumatoid; Cell Line; Cell Movement; Cell Survival; Cysteine; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Male; NF-E2-Related Factor 2; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; Up-Regulation

2016
S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3.
    Antioxidants & redox signaling, 2014, May-20, Volume: 20, Issue:15

    Conventional revascularization strategies or drug therapies for ischemic heart disease (IHD) are designed for reperfusion of coronary arteries to salvage cardiomyocytes, but occasionally, myocardial reperfusion injury can occur because of microcirculatory dysfunction. Therefore, a more microcirculation-friendly strategy should be explored to overcome and compensate for the shortcomings of conventional strategies. In this work, we investigated the proangiogenic effect of S-Propargyl-Cysteine (SPRC), a novel water-soluble modulator of endogenous hydrogen sulfide, and elucidated the possible mechanisms involved to provide an experimental basis for angiogenesis-mediated drug therapy for IHD.. SPRC promoted cell proliferation, adhesion, migration, and tube formation of primary human umbilical vein endothelial cells (HUVEC) and increased angiogenesis in the rat aortic ring and Matrigel plug models. In a mouse model of hindlimb ischemia and a rat model of myocardial ischemia, SPRC also promoted angiogenesis after ligation of the left femoral artery or coronary artery to ameliorate ischemic conditions. In primary HUVEC, STAT3 phosphorylation was significantly induced after SPRC treatment. The critical roles of STAT3 in mediating the proangiogenic effect of SPRC were confirmed by RNA interference. Co-crystallization excluded the possible direct interaction between SPRC and STAT3, whereas co-immunoprecipitation revealed an enhanced interaction between VEGFR2 and STAT3 after SPRC treatment. Meanwhile, immunofluorescence and chromatin immunoprecipitation showed that SPRC induced the nuclear translocation of STAT3, followed by transcriptional activation of downstream promoters, particularly the Vegf promoter.. We present a novel STAT3-mediated mechanism in SPRC-induced angiogenesis and demonstrate the therapeutic potential of SPRC in ischemic disease through angiogenesis promotion.

    Topics: Active Transport, Cell Nucleus; Angiogenesis Inducing Agents; Animals; Cell Adhesion; Cell Movement; Cell Proliferation; Cysteine; Disease Models, Animal; Human Umbilical Vein Endothelial Cells; Humans; Hydrogen Sulfide; Male; Mice; Myocardial Ischemia; Neovascularization, Pathologic; Neovascularization, Physiologic; Protein Binding; Protein Transport; Rats; STAT3 Transcription Factor; Transcriptional Activation; Vascular Endothelial Growth Factor Receptor-2

2014
Cardioprotective effects of a novel hydrogen sulfide agent-controlled release formulation of S-propargyl-cysteine on heart failure rats and molecular mechanisms.
    PloS one, 2013, Volume: 8, Issue:7

    Heart failure (HF) is one of the most serious diseases worldwide. S-propargyl-cysteine (SPRC), a novel modulator of endogenous hydrogen sulfide, is proved to be able to protect against acute myocardial ischemia. In order to produce more stable and sustainable hydrogen sulfide, we used controlled release formulation of SPRC (CR-SPRC) to elucidate possible cardioprotective effects on HF rats and investigate involved mechanisms on apoptosis and oxidation.. Left coronary artery was occluded to induce HF model of rat. The survival rats were randomly divided into 7 groups after 24 hours and treated with drugs for 6 weeks. Echocardiographic indexes were recorded to determine cardiac function. TTC staining was performed to determine infarct size. Plasmatic level of hydrogen sulfide was detected by modified sulfide electrode. Activity of enzyme and expression of protein were determined by colorimetry and Western blot, respectively.. The cardioprotective effects of CR-SPRC on HF rats were confirmed by significant reduction of infarct size and improvement of cardiac function, with better effects compared to normal SPRC. CR-SPRC modulated antioxidant defenses by preserving levels of GSH, CAT and SOD and reducing CK leakage. In addition, CR-SPRC elevated ratio of Bcl-2/Bax and inhibited activity of caspases to protect against myocardial apoptosis. The cardioprotective effects of CR-SPRC were mediated by hydrogen sulfide.. All experiment data indicated cardioprotective effects of CR-SPRC on HF rats. More importantly, CR-SPRC exerted better effects than normal SPRC in all respects, providing a new perspective on hydrogen sulfide-mediated drug therapy.

    Topics: Animals; Apoptosis; Cardiotonic Agents; Cysteine; Delayed-Action Preparations; Disease Models, Animal; Fibrosis; Heart Failure; Heart Ventricles; Hydrogen Sulfide; Male; Oxidative Stress; Rats

2013
Effects of S-propargyl-cysteine (SPRC) in caerulein-induced acute pancreatitis in mice.
    PloS one, 2012, Volume: 7, Issue:3

    Hydrogen sulfide (H(2)S), a novel gaseous messenger, is synthesized endogenously from L-cysteine by two pyridoxal-5'-phosphate-dependent enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). S-propargyl-cysteine (SPRC) is a slow H(2)S releasing drug that provides cysteine, a substrate of CSE. The present study was aimed to investigate the effects of SPRC in an in vivo model of acute pancreatitis (AP) in mice. AP was induced in mice by hourly caerulein injections (50 µg/kg) for 10 hours. Mice were treated with SPRC (10 mg/kg) or vehicle (distilled water). SPRC was administered either 12 h before or 3 h before the induction of pancreatitis. Mice were sacrificed 1 h after the last caerulein injection. Blood, pancreas and lung tissues were collected and processed to measure the plasma amylase, plasma H(2)S, myeloperoxidase (MPO) activities and cytokine levels in pancreas and lung. The results revealed that significant reduction of inflammation, both in pancreas and lung was associated with SPRC given 3 h prior to the induction of AP. Furthermore, the beneficial effects of SPRC were associated with reduction of pancreatic and pulmonary pro-inflammatory cytokines and increase of anti-inflammatory cytokine. SPRC administered 12 h before AP induction did not cause significant improvement in pancreatic and lung inflammation. Plasma H(2)S concentration showed significant difference in H(2)S levels between control, vehicle and SPRC (administered 3 h before AP) treatment groups. In conclusion, these data provide evidence for protective effects of SPRC in AP possibly by virtue of its slow release of endogenous H(2)S.

    Topics: Acute Disease; Amylases; Animals; Anti-Inflammatory Agents, Non-Steroidal; Ceruletide; Cysteine; Cytokines; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Gases; Hydrogen Sulfide; Inflammation; Lung; Male; Mice; Pancreas; Pancreatitis; Peroxidase; Time Factors

2012
S-propargyl-cysteine protects both adult rat hearts and neonatal cardiomyocytes from ischemia/hypoxia injury: the contribution of the hydrogen sulfide-mediated pathway.
    Journal of cardiovascular pharmacology, 2009, Volume: 54, Issue:2

    In this study, we determined the cardioprotective effects of S-propargyl-cysteine (SPRC), a structural analog of S-allylcysteine (SAC), using in vivo models of acute myocardial infarction (MI) and in vitro hypoxic cardiomyocytes models. MI was created in rats by ligating the left anterior descending coronary artery. Plasma enzymes levels and cystathionine-gamma-lyase (CSE) activities were determined. Primary cultures of newborn rats' cardiomyocytes were injured by hypoxia for 6 h. Cell viabilities were measured with the thiazolyl blue assay. RT-PCR and western blot analysis revealed the expression of CSE in both models. The protective effects of SPRC were associated with an observed reduction in infarct size (20.8 +/- 2.4% vs. 36.0 +/- 1.3%), decreased plasma enzymes levels and reduced malondialdehyde levels when compared to the MI vehicle group (P < 0.05); cardiac function was also improved. SPRC increased CSE activity and plasma H2S concentration by 1.6-fold and 1.3-fold, respectively, in MI rats. Decreased cell viability (64.5 +/- 5.4%) in hypoxic cardiomyocytes could be rescued with use of SPRC (81.0 +/- 3.1%). Similarly, mRNA and protein expression of CSE were upregulated in the SPRC group. Treatment with the CSE inhibitor propargylglycine abolished the protective effects of SPRC. Our study provides novel evidence that SPRC is protective in myocardial infarctions via a H2S-related pathway.

    Topics: Animals; Animals, Newborn; Cell Hypoxia; Cell Survival; Cystathionine gamma-Lyase; Cysteine; Disease Models, Animal; Hydrogen Sulfide; Male; Myocardial Infarction; Myocardial Ischemia; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Up-Regulation

2009