s-nitro-n-acetylpenicillamine has been researched along with Pain* in 1 studies
1 other study(ies) available for s-nitro-n-acetylpenicillamine and Pain
Article | Year |
---|---|
Participation of the nitric oxide-cyclic GMP-ATP-sensitive K(+) channel pathway in the antinociceptive action of ketorolac.
The involvement of nitric oxide (NO), cyclic GMP and ATP-sensitive K(+) channels in the antinociceptive effect of ketorolac was assessed using the formalin test in the rat. Local administration of ketorolac in a formalin-injured paw produced a dose-dependent antinociceptive effect due to a local action, as drug administration in the contralateral paw was ineffective. Pretreatment of the injured paw with N(G)-L-nitro-arginine methyl ester (L-NAME, an NO synthesis inhibitor), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ, a soluble guanylyl cyclase inhibitor) or glibenclamide (an ATP-sensitive K(+) channel blocker) prevented ketorolac-induced antinociception. However, pretreatment with saline or N(G)-D-nitro-arginine methyl ester (D-NAME) did not block antinociception. Local administration of S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) was inactive by itself, but increased the effect of ketorolac. The present results suggest that the antinociceptive effect of ketorolac involves activation of the NO-cyclic GMP pathway, followed by an opening of ATP-sensitive K(+) channels at the peripheral level. Topics: Adenosine Triphosphate; Analgesics; Animals; Behavior, Animal; Cyclic AMP; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; Glyburide; Guanylate Cyclase; Ketorolac; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Oxadiazoles; Pain; Pain Measurement; Penicillamine; Potassium Channels; Quinoxalines; Rats; Rats, Wistar; Signal Transduction | 2001 |