s-nitro-n-acetylpenicillamine has been researched along with Heart-Failure* in 2 studies
2 other study(ies) available for s-nitro-n-acetylpenicillamine and Heart-Failure
Article | Year |
---|---|
Simvastatin reverses impaired regulation of renal oxygen consumption in congestive heart failure.
Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) regulates renal O(2) consumption. This mechanism is impaired in heart and kidney of dogs with heart failure (CHF). Simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, increases eNOS expression in the endothelium. Therefore, we studied whether simvastatin treatment could restore the regulation of renal O(2) consumption by stimulators of NO production in dogs with CHF. Renal O(2) consumption was measured after stimulation of NO production with bradykinin, ramiprilat, or amlodipine or the NO donor S-nitroso-N-acetylpenicillamine (SNAP). Simvastatin delayed the time to euthanasia in dogs with CHF (35 +/- 1.0 vs. 29 +/- 1.2 days; P < 0.01). In normal dogs, bradykinin (10(-4) M), ramiprilat (10(-4) M), amlodipine (10(-5) M), and SNAP (10(-4) M) significantly reduced O(2) consumption in the renal cortex (-31.8 +/- 0.9, -30.3 +/- 1.1, -30.1 +/- 2.0, -46.9 +/- 1.0%) and renal medulla (-29.7 +/- 2.1, -33.0 +/- 2.7, -30.8 +/- 2.2, -46.8 +/- 1.1%). Responses to bradykinin, ramiprilat, and amlodipine were significantly attenuated in CHF but were partially or completely restored by simvastatin. Responses to SNAP were unaffected. These data demonstrate that treatment with simvastatin improves renal production of NO in CHF, restoring the normal regulation of renal O(2) consumption by NO. Topics: Amlodipine; Angiotensin-Converting Enzyme Inhibitors; Animals; Bradykinin; Dogs; Endothelium, Vascular; Heart Failure; Hemodynamics; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Kidney; Kidney Cortex; Kidney Medulla; Male; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Oxygen Consumption; Penicillamine; Ramipril; Simvastatin; Ventricular Function, Left | 2001 |
Synergy of amlodipine and angiotensin-converting enzyme inhibitors in regulating myocardial oxygen consumption in normal canine and failing human hearts.
The production of endogenous nitric oxide, which regulates myocardial oxygen consumption, is decreased in heart failure. As with angiotensin-converting enzyme (ACE) inhibitors, amlodipine, a calcium antagonist, increases kinin-mediated nitric oxide production in coronary microvessels. We investigated the possibility of synergy between ACE inhibitors and amlodipine in regulating myocardial oxygen consumption. Left ventricular myocardium was isolated from 6 healthy dog hearts and 5 human hearts with end-stage heart failure at the time of orthotopic heart transplantation. Myocardial oxygen consumption was measured before and after administration of bradykinin, S-nitroso N-acetyl penicillamine (SNAP, a nitric oxide donor), ramiprilat (an ACE inhibitor), amlodipine, and the combination of a sub-threshold dose of ramiprilat (10(-8) md/L) + amlodipine. These experiments were repeated with L-nitro-arginine methyl ester (L-NAME, an inhibitor of nitric oxide synthesis), dichloroisocoumarin (an inhibitor of kinin synthesis), and HOE 140 (a B2 kinin-receptor antagonist). Baseline myocardial oxygen consumption in canine hearts was 182 +/- 21 nmol/g/min. Bradykinin and SNAP caused dose-dependent reductions in myocardial oxygen consumption (p <0.05). Ramiprilat and amlodipine caused a 10 +/- 3.2% and 11 +/- 0.8% reduction in myocardial oxygen consumption, respectively, when used alone (p <0.05). In the presence of a subthreshold dose of ramiprilat, amlodipine caused a larger (15 +/- 1.7%) reduction in myocardial oxygen consumption compared with either drug used alone (p <0.05). In human hearts, baseline myocardial oxygen consumption was 248 +/- 57 nmol/g/min. Amlodipine caused a larger reduction in myocardial oxygen consumption when used with ramiprilat (22 +/- 3.2%) as compared with amlodipine alone (15 +/- 2.6%). The effect of both drugs was attenuated by L-NAME, dichloroisocoumarin, and HOE 140 (p <0.05). In conclusion, ACE inhibitors and amlodipine act synergistically to regulate myocardial oxygen consumption by modulating kinin-mediated nitric oxide release, and this combination of drugs may be useful in the treatment of heart failure. Topics: Adolescent; Adrenergic beta-Antagonists; Adult; Amlodipine; Angiotensin-Converting Enzyme Inhibitors; Animals; Bradykinin; Bradykinin Receptor Antagonists; Calcium Channel Blockers; Child; Coumarins; Dogs; Drug Synergism; Drug Therapy, Combination; Female; Heart Failure; Humans; Isocoumarins; Male; Middle Aged; Myocardial Contraction; Myocardium; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Oxygen Consumption; Penicillamine; Ramipril; Serine Proteinase Inhibitors | 1999 |