s-allylcysteine has been researched along with Breast-Neoplasms* in 2 studies
2 other study(ies) available for s-allylcysteine and Breast-Neoplasms
Article | Year |
---|---|
S-Allylcysteine reduces breast tumor cell adhesion and invasion.
Previous studies show that aqueous garlic extract and its derivatives (e.g. S-allylcysteine [SAC]) prevent carcinogen-induced breast tumorigenesis. However, investigations testing the effect of SAC on later stages of breast tumorigenesis and/or metastasis have produced mixed results. Here we show that SAC significantly reduced anchorage-dependent and -independent growth of MDA-MB-231 breast tumor cells in a dose- and time-dependent fashion, and sub-lethal SAC-treatment altered mammary tumor cell adhesion and invasion through components of the extracellular matrix. We provide evidence to suggest increased expression of E-cadherin and reduced MMP-2 expression and activity are partially responsible for inhibition of mammary tumor cell invasion by SAC. Because E-cadherin and MMP-2 are important in cancer metastasis, these results suggest a link between SAC induction of E-cadherin and reduction of MMP2 activity with the inhibition of cell motility and invasion; thus providing evidence that events leading to breast cancer metastasis are repressed by sub-lethal SAC-treatment. Topics: Breast Neoplasms; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cysteine; Extracellular Matrix Proteins; Humans; Neoplasm Invasiveness | 2008 |
Induction of histone acetylation and inhibition of growth of mouse erythroleukemia cells by S-allylmercaptocysteine.
Growth-inhibitory effects on DS19 mouse erythroleukemia cells were seen in the micromolar concentration range with allicin and S-allylmercaptocysteine and in the millimolar range with allyl butyrate, allyl phenyl sulfone, and S-allyl cysteine. Increased acetylation of histones was induced by incubation of cells with the allyl compounds at concentrations similar to those that resulted in the inhibition of cell proliferation. The induction of histone acetylation by S-allylmercaptocysteine was also observed in Caco-2 human colon cancer cells and T47D human breast cancer cells. In contrast to the effect on histone acetylation, there was a decrease in the incorporation of phosphate into histones when DS19 cells were incubated with 25 microM S-allylmercaptocysteine. Histone deacetylase activity was inhibited by allyl butyrate, but there was little or no effect with the allyl sulfur compounds examined in this study. A similar degree of downregulation of histone deacetylase and histone acetyltransferase was observed when DS19 cells were incubated with S-allylmercaptocysteine or allyl isothiocyanate. The induction of histone acetylation by S-allylmercaptocysteine was not blocked by a proteasome inhibitor. The mechanism by which S-allylmercaptocysteine induces histone acetylation remains to be characterized. It may be related in part to metabolism to allyl mercaptan, which is a more effective inhibitor of histone deacetylase. Topics: Acetylation; Acetyltransferases; Allyl Compounds; Animals; Antineoplastic Agents; Breast Neoplasms; Colonic Neoplasms; Cysteine; Disulfides; Electrophoresis, Polyacrylamide Gel; Female; Histone Acetyltransferases; Histone Deacetylases; Histones; Humans; Leukemia, Erythroblastic, Acute; Leupeptins; Mice; Saccharomyces cerevisiae Proteins; Sulfinic Acids; Tumor Cells, Cultured | 2002 |