s-adenosylhomocysteine and Parkinson-Disease

s-adenosylhomocysteine has been researched along with Parkinson-Disease* in 7 studies

Trials

1 trial(s) available for s-adenosylhomocysteine and Parkinson-Disease

ArticleYear
Tolcapone decreases plasma levels of S-adenosyl-L-homocysteine and homocysteine in treated Parkinson's disease patients.
    European journal of clinical pharmacology, 2006, Volume: 62, Issue:6

    Elevated plasma total homocysteine (tHcy) appeared in levodopa/dopadecarcoxylase inhibitor (DDI) treated patients with Parkinson's disease (PD). One therapeutic approach for tHcy reduction is vitamine supplementation, since folic acid and cobalamine catalyse and enhance metabolism of tHcy to methionine. A further therapeutic alternative is inhibition of catechol-O-methyltransfrase (COMT) on a regular basis, when levodopa/DDI treatment is performed.. We measured the concentrations of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), tHcy, levodopa and 3-O-methyldopa in plasma of 13 levodopa treated PD patients before first drug intake at 0600 hours. Blood samples were taken before and after 2 days of additional application of the centrally acting catechol-O-methyltransferase inhibitor tolcapone 100 mg t.i.d.. Plasma levels of SAH [day 1: 48.32+/-22.52, 23.92-98.25 (mean+/-SD, range; micromol/l); day 3: 37.72+/-15.84, 23.4-61.89; p = 0.01] and tHcy (day 1: 13.88+/-5.62, 7.63-24.81; day 3: 11.38+/-4.44, 5.98-20.45; p = 0.04) significantly reduced. Plasma levels of levodopa did not significantly (p = 0.17) increase, whereas 3-OMD concentrations significantly (p = 0.0002) reduced after additional tolcapone intake. There was no significant change of SAM plasma levels (p = 0.22).. Our prospective trial shows, that COMT inhibition with tolcapone lowers tHcy synthesis. Tolcapone may also possess beside its proven, occasional, hepatotoxic potency also beneficial effects via decrease of SAH and tHcy. This may hypothetically reduce homocysteine mediated progress of neuronal degeneration and the risk for onset of dementia, vascular disease and polyneuropathy in levodopa treated PD patients in the long term.

    Topics: Aged; Aged, 80 and over; Antiparkinson Agents; Aromatic Amino Acid Decarboxylase Inhibitors; Benzophenones; Catechol O-Methyltransferase Inhibitors; Enzyme Inhibitors; Female; Homocysteine; Humans; Levodopa; Male; Middle Aged; Nitrophenols; Parkinson Disease; Prospective Studies; S-Adenosylhomocysteine; Tolcapone

2006

Other Studies

6 other study(ies) available for s-adenosylhomocysteine and Parkinson-Disease

ArticleYear
Development of an HTRF Assay for the Detection and Characterization of Inhibitors of Catechol-O-Methyltransferase.
    Journal of biomolecular screening, 2016, Volume: 21, Issue:5

    Catechol-O-methyltransferase (COMT) plays an important role in the deactivation of catecholamine neurotransmitters and hormones. Inhibitors of COMT, such as tolcapone and entacapone, are used clinically in the treatment of Parkinson's disease. Discovery of novel inhibitors has been hampered by a lack of suitable assays for high-throughput screening (HTS). Although assays using esculetin have been developed, these are affected by fluorescence, a common property of catechol-type compounds. We have therefore evaluated a new homogenous time-resolved fluorescence (HTRF)-based assay from CisBio (Codolet, France), which measures the production of S-adenosyl-L-homocysteine (SAH). The assay has been run in both HTS and medium-throughput screening (MTS) modes. The assay was established using membranes expressing human membrane-bound COMT and was optimized for protein and time to give an acceptable signal window, good potency for tolcapone, and a high degree of translation between data in fluorescence ratio and data in terms of [SAH] produced. pIC50 values for the hits from the HTS mode were determined in the MTS mode. The assay also proved suitable for kinetic studies such as Km,app determination.

    Topics: Benzophenones; Catechol O-Methyltransferase; Catechol O-Methyltransferase Inhibitors; Catechols; High-Throughput Screening Assays; Humans; Kinetics; Nitrophenols; Parkinson Disease; S-Adenosylhomocysteine; Small Molecule Libraries; Tolcapone

2016
Impaired transmethylation potential in Parkinson's disease patients treated with L-Dopa.
    Neuroscience letters, 2010, Jan-14, Volume: 468, Issue:3

    Hyperhomocysteinaemia was reported in patients with Parkinson's disease (PD) treated with l-Dopa. The increase in plasma concentration of this sulfur compound arises from the massive methylation of the drug operated by the enzyme catechol-O-methyltransferase (COMT), which acts as a powerful sink of methyl groups. The contemporary occurrence of C677T polymorphism in homozygosity, leading to a temperature-labile variant of the MTHFR enzyme, induces an even more marked increase in tHcy. Here we show that l-Dopa administration in hyperhomocysteinemic PD patients is able to lower intracellular concentration of S-Adenosylmethionine (AdoMet) in erythrocytes (RBC), while the occurrence of hyperhomocysteinaemia causes a significant increase in S-Adenosylhomocysteine (AdoHcy) level. In patients with PD treated with l-Dopa and hyperhomocysteinemic, the remarkable decrease in AdoMet and the concurrent increase in AdoHcy concentration both contribute to significantly lower the transmethylation potential ([AdoMet]/[AdoHcy]), a useful index of the effectiveness of methyl group transfer by methyltransferases. This decrease could indeed contribute to partly attenuate, through a self-limiting kinetic mechanism, the tendency of developing drug resistance, partly mediated in these patients by COMT upregulation. Our results also support the conclusion that COMT inhibitors (entacapone or tolcapone), when administered in PD patients treated with l-Dopa, may potentiate the endogenous AdoHcy-dependent COMT inhibition mechanism already operative in a variable fashion.

    Topics: Aged; Antiparkinson Agents; Cross-Sectional Studies; Erythrocytes; Female; Genotype; Homocysteine; Humans; Levodopa; Male; Methylation; Methylenetetrahydrofolate Reductase (NADPH2); Middle Aged; Parkinson Disease; Polymorphism, Genetic; S-Adenosylhomocysteine; S-Adenosylmethionine

2010
Methylation status and neurodegenerative markers in Parkinson disease.
    Clinical chemistry, 2009, Volume: 55, Issue:10

    Increased concentrations of plasma total homocysteine (tHcy) have been associated with age-related diseases, including dementia, stroke, and Parkinson disease (PD). Methylation status might link Hcy metabolism to neurodegenerative proteins in patients with PD.. We tested blood samples from 87 patients with PD (median age 68 years; 35 men) for tHcy, methylmalonic acid (MMA), vitamin B(12), vitamin B(6), folate, S-adenosyl methionine (SAM), S-adenosyl homocysteine (SAH), and amyloid-beta(1-42). We collected citrate blood from a subset of 45 patients to prepare platelet-rich plasma, and we used washed platelets to prepare cell extracts for amyloid precursor protein (APP) and alpha-synuclein assays. We used brain parenchyma sonography to estimate the substantia nigra echogenic area in a subset of 59 patients.. Serum concentrations of tHcy were increased in PD patients (median 14.8 micromol/L). tHcy (beta coefficient = -0.276) and serum creatinine (beta = -0.422) were significant predictors of the ratio of SAM/SAH in plasma (P < 0.01). The plasma SAM/SAH ratio was a significant determinant for DemTect scores (beta = 0.612, P = 0.004). Significant negative correlations were found between concentrations of SAH in plasma and platelet APP and between SAM and platelet alpha-synuclein. A larger echogenic area of the substantia nigra was related to higher serum concentrations of MMA (P = 0.016).. Markers of neurodegeneration (APP, alpha-synuclein) are related to markers of methylation (SAM, SAH) in patients with PD. Better cognitive function was related to higher methylation potential (SAM/SAH ratio).

    Topics: Aged; alpha-Synuclein; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Biomarkers; Blood Platelets; Cognition Disorders; Female; Folic Acid; Homocysteine; Humans; Male; Methylation; Middle Aged; Nerve Degeneration; Parkinson Disease; Peptide Fragments; S-Adenosylhomocysteine; S-Adenosylmethionine; Substantia Nigra; Ultrasonography; Vitamin B 6

2009
Characterization of brain beta-carboline-2-N-methyltransferase, an enzyme that may play a role in idiopathic Parkinson's disease.
    Neurochemical research, 1997, Volume: 22, Issue:2

    The activity of beta-carboline-2-N-methyltransferase results in the formation of neurotoxic N-methylated beta-carbolinium compounds. We have hypothesized that these N-methylated beta-carbolinium cations may contribute to the development of idiopathic Parkinson's disease. This report describes experiments undertaken to optimize assay conditions for bovine brain beta-carboline-2-N-methyltransferase activity. The activity of beta-carboline-2-N-methyltransferase is primarily localized in the cytosol, has a pH optimum of 8.5-9, and obeys Michaelis-Menten kinetics with respect to its substrates, 9-methylnorharman (9-MeNH) and S-adenosyl-L-methionine (SAM). Kinetic constants, KM and Vmax, with respect to 9-MeNH, are 75 microM and 48 pmol/h/mg protein, respectively. The KM for SAM is 81 microM and the Vmax is 53 pmol/h/mg protein. In addition, enzyme activity is inhibited by S-adenosyl-L-homocysteine (SAH) or zinc, and is increased 2-fold in the presence of iron or manganese. Enzyme characterization is a prerequisite to the purification of this N-methyltransferase from bovine brain as well as comparison of its activity in human brain from control and Parkinson's disease individuals.

    Topics: Animals; Brain; Carbolines; Cattle; Cytosol; Enzyme Inhibitors; Harmine; Humans; Hydrogen-Ion Concentration; Kinetics; Methylation; Methyltransferases; Parkinson Disease; S-Adenosylhomocysteine; S-Adenosylmethionine; Zinc

1997
Levels of L-methionine S-adenosyltransferase activity in erythrocytes and concentrations of S-adenosylmethionine and S-adenosylhomocysteine in whole blood of patients with Parkinson's disease.
    Experimental neurology, 1997, Volume: 145, Issue:2 Pt 1

    In the present study, levels of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in whole blood as well as L-methionine S-adenosyltransferase (MAT) activity in erythrocytes were assayed in a series of 20 patients with Parkinson's disease and 12 healthy control subjects. A significant difference was found with regard to SAM levels between patients and controls, with the detected levels being 383.1 +/- 41.5 nM for the parkinsonian patients and 680.6 +/- 30.9 nM for the controls. With regard to SAH, we found no difference between the groups. The catalytic activity of MAT was increased by 30% in patients compared to controls, with the Vmax for methionine being 17.9 +/- 3.7 and 13.9 +/- 2.2 pmol/mg/h, respectively.

    Topics: Antiparkinson Agents; Chromatography, High Pressure Liquid; Erythrocytes; Female; Humans; Levodopa; Male; Methionine Adenosyltransferase; Middle Aged; Parkinson Disease; S-Adenosylhomocysteine; S-Adenosylmethionine

1997
Striatal dopamine depletion, tremors, and hypokinesia following the intracranial injection of S-adenosylmethionine: a possible role of hypermethylation in parkinsonism.
    Molecular and chemical neuropathology, 1995, Volume: 26, Issue:3

    The major symptoms of Parkinson disease (PD) are tremors, hypokinesia, rigidity, and abnormal posture, caused by the degeneration of dopamine (DA) neurons in the substantia nigra (SN) and deficiency of DA in the neostriatal DA terminals. Norepinephrine (NE) and serotonin (5-HT) levels in the neostriatum and tyrosine hydroxylase and melanin pigments in the substantia nigra are also decreased, and brain cholinergic activity is increased. The cause of PD is unknown, but PD is an age-related disorder, suggesting that changes that occur during the aging process may help to precipitate PD. Methylation increases in aging animals. Increased methylation can deplete DA, NE, and 5-HT; increase acetylcholine; and cause hypokinesia and tremors. These effects are similar to changes seen in PD, and interestingly also, they are similar to some of the changes that are associated with the aging process. It is suggested, therefore, that increased methylation may be an inducing factor in parkinsonism. Accordingly, the effects of an increase in methylation in the brain of rats were studied. S-adenosylmethionine (AdoMet), the limiting factor in the methylation process, was injected into the lateral ventricle of rats. Specific behavioral changes that resemble changes seen in PD were investigated. The results showed that AdoMet caused tremors, rigidity, hypokinesia, and depleted DA. The hypokinetic effects of a single dose of AdoMet lasted for about 90 min. AdoMet has a dose-dependent hypokinetic effect. A dose of 9.4 nmol reduced movement time (MT) by 68.9% and increased rest time (RT) by 20.7%, and a dose of 400 nmol reduced MT by 92.4% and increased RT by 27.6%. The normethyl analog of AdoMet, S-adenosylhomocysteine, did not cause hypokinesia or tremors, but it blocked the AdoMet-induced motor effects. L-dopa, the precursor of DA, also blocked the AdoMet-induced motor effects. These data suggest that the methyl group of AdoMet as well as DA depletion are involved in the AdoMet-induced motor effects. A dose of 0.65 mumol of AdoMet depleted DA in the ipsilateral caudate nucleus (CN) or neostriatum by 50.1%, and DA in the contralateral CN was reduced by 9.3%. Double the dose of AdoMet did not increase the depletion of DA on the ipsilateral CN, but DA in the contralateral CN was decreased by 26.3%. Taken together, the results suggest that increased methylation may contribute to the symptoms of PD.

    Topics: Animals; Antiparkinson Agents; Caudate Nucleus; Dopamine; Dose-Response Relationship, Drug; Hypokinesia; Injections, Intraventricular; Levodopa; Male; Methylation; Motor Activity; Neostriatum; Parkinson Disease; Rats; Rats, Sprague-Dawley; S-Adenosylhomocysteine; S-Adenosylmethionine; Tremor

1995