s-adenosylhomocysteine has been researched along with Diabetes-Mellitus* in 3 studies
1 review(s) available for s-adenosylhomocysteine and Diabetes-Mellitus
Article | Year |
---|---|
Role of S-adenosylhomocysteine in cardiovascular disease and its potential epigenetic mechanism.
Transmethylation reactions utilize S-adenosylmethionine (SAM) as a methyl donor and are central to the regulation of many biological processes: more than fifty SAM-dependent methyltransferases methylate a broad spectrum of cellular compounds including DNA, histones, phospholipids and other small molecules. Common to all SAM-dependent transmethylation reactions is the release of the potent inhibitor S-adenosylhomocysteine (SAH) as a by-product. SAH is reversibly hydrolyzed to adenosine and homocysteine by SAH hydrolase. Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. However, a major unanswered question is if homocysteine is causally involved in disease pathogenesis or simply a passive and indirect indicator of a more complex mechanism. A chronic elevation in homocysteine levels results in a parallel increase in intracellular or plasma SAH, which is a more sensitive biomarker of cardiovascular disease than homocysteine and suggests that SAH is a critical pathological factor in homocysteine-associated disorders. Previous reports indicate that supplementation with folate and B vitamins efficiently lowers homocysteine levels but not plasma SAH levels, which possibly explains the failure of homocysteine-lowering vitamins to reduce vascular events in several recent clinical intervention studies. Furthermore, more studies are focusing on the role and mechanisms of SAH in different chronic diseases related to hyperhomocysteinemia, such as cardiovascular disease, kidney disease, diabetes, and obesity. This review summarizes the current role of SAH in cardiovascular disease and its effect on several related risk factors. It also explores possible the mechanisms, such as epigenetics and oxidative stress, of SAH. This article is part of a Directed Issue entitled: Epigenetic dynamics in development and disease. Topics: Atherosclerosis; Diabetes Mellitus; Endothelium, Vascular; Epigenesis, Genetic; Humans; Hyperhomocysteinemia; Kidney Diseases; Obesity; Oxidative Stress; S-Adenosylhomocysteine; S-Adenosylmethionine | 2015 |
1 trial(s) available for s-adenosylhomocysteine and Diabetes-Mellitus
Article | Year |
---|---|
Blood S-adenosylmethionine concentrations and lymphocyte methylenetetrahydrofolate reductase activity in diabetes mellitus and diabetic nephropathy.
The erythrocyte concentrations of the body's chief physiologic methyl donor S-adenosylmethionine (SAM) and of its metabolite and inhibitor S-adenosylhomocysteine (SAH), the plasma concentrations of total homocysteine (tHcy), and the activity of N(5,10) methylenetetrahydrofolate reductase (MTHFR) in lymphocytes were determined in healthy subjects and patients with diabetes mellitus without complications and at various stages of diabetic nephropathy, categorized according to the degree of progression of the disease. These groups were as follows: 1, control; 2, diabetics with no complications; 3, patients with albuminuria; 4, patients with an elevated plasma creatinine; and 5, patients on dialysis. No parameter studied exhibited significant differences between the type 1 and the type 2 diabetics. In control subjects, the blood concentrations of SAM were proportional to the activity of MTHFR; in diabetics, it was not. Consistent with previous observations, progression of nephropathy was accompanied by increased concentrations of tHcy. Increased erythrocyte concentrations of SAH, decreased erythrocyte concentrations of SAM, SAM/SAH ratios, and lymphocyte MTHFR activity also accompanied disease progression. The blood concentrations of SAH paralleled those of tHcy, while the concentrations of SAM showed a bimodal relationship with those of tHcy. These results provide further evidence that alterations in the blood concentrations of SAM and related compounds are abnormal in patients with diabetes, particularly in those with nephropathy. The deficiency of SAM may lead to methyl deficiencies, which may contribute to the high morbidity and mortality in patients with diabetic nephropathy. We have also demonstrated a decrease in lymphocyte MTHFR activity in patients with advanced nephropathy, suggesting that hyperhomocysteinemia in these patients may be due to a generalized metabolic abnormality. Further studies are needed to determine the pathogenesis of these abnormalities and whether they are present in renal failure due to causes other than diabetes or whether they are specific to diabetic nephropathy. Topics: Adult; Albuminuria; Creatinine; Diabetes Complications; Diabetes Mellitus; Diabetic Nephropathies; Disease Progression; Erythrocytes; Female; Homocysteine; Humans; Lymphocytes; Male; Methylenetetrahydrofolate Reductase (NADPH2); Middle Aged; Oxidoreductases Acting on CH-NH Group Donors; Reference Values; Regression Analysis; Renal Dialysis; S-Adenosylhomocysteine; S-Adenosylmethionine | 2001 |
1 other study(ies) available for s-adenosylhomocysteine and Diabetes-Mellitus
Article | Year |
---|---|
Plasma trimethylamine N-oxide concentration is associated with choline, phospholipids, and methyl metabolism.
Elevated plasma concentrations of the gut bacteria choline metabolite trimethylamine N-oxide (TMAO) are associated with atherosclerosis. However, the determinants of TMAO in humans require additional assessment.. We examined cardiometabolic risk factors and pathways associated with TMAO concentrations in humans.. A total of 283 individuals (mean ± SD age: 66.7 ± 9.0 y) were included in this observational study. Plasma concentrations of trimethylamine, TMAO, choline, lipids, phospholipids, and methyl metabolites were measured.. Study participants were divided into 4 groups by median concentrations of TMAO and choline (4.36 and 9.7 μmol/L, respectively). Compared with the group with TMAO and choline concentrations that were less than the median (n = 82), the group with TMAO and choline concentrations that were at least the median (n = 83) was older and had lower high-density lipoprotein (HDL) cholesterol, phospholipids, and methylation potential, higher creatinine, betaine, S-adenosylhomocysteine (SAH), and S-adenosylmethionine (SAM), and higher percentages of men and subjects with diabetes. The difference in plasma TMAO concentrations between men and women (7.3 ± 10.0 compared with 5.4 ± 5.6 μmol/L, respectively) was NS after adjustment for age and creatinine (P = 0.455). The TMAO:trimethylamine ratio was higher in men (P < 0.001). Diabetes was associated with significantly higher plasma TMAO concentration (8.6 ± 12.2 compared with 5.4 ± 5.2 μmol/L) even after adjustments. Sex and diabetes showed an interactive effect on trimethylamine concentrations (P = 0.010) but not on TMAO concentrations (P = 0.950). Positive determinants of TMAO in a stepwise regression model that applied to the whole group were SAH, trimethylamine, choline, and female sex, whereas plasma phosphatidylcholine was a negative determinant.. High TMAO and choline concentrations are associated with an advanced cardiometabolic risk profile. Diabetes is related to higher plasma TMAO concentrations but also to alterations in interrelated pathways such as lipids, phospholipids, and methylation. Elevated plasma TMAO concentrations likely reflect a specific metabolic pattern characterized by low HDL and phospholipids in addition to hypomethylation. This trial was registered at clinicaltrials.gov as NCT02586181 and NCT02588898. Topics: Aged; Bacteria; Betaine; Cardiovascular Diseases; Choline; Creatinine; Diabetes Mellitus; Female; Gastrointestinal Microbiome; Humans; Lipoproteins, HDL; Male; Methylamines; Methylation; Middle Aged; Phosphatidylcholines; Phospholipids; S-Adenosylhomocysteine; S-Adenosylmethionine; Sex Factors | 2016 |