s-adenosylhomocysteine has been researched along with Dengue* in 3 studies
1 review(s) available for s-adenosylhomocysteine and Dengue
Article | Year |
---|---|
The Medicinal Chemistry of Dengue Virus.
The dengue virus and related flaviviruses are an increasing global health threat. In this perspective, we comment on and review medicinal chemistry efforts aimed at the prevention or treatment of dengue infections. We include target-based approaches aimed at viral or host factors and results from phenotypic screenings in cellular assay systems for viral replication. This perspective is limited to the discussion of results that provide explicit chemistry or structure-activity relationship (SAR), or appear to be of particular interest to the medicinal chemist for other reasons. The discovery and development efforts discussed here may at least partially be extrapolated toward other emerging flaviviral infections, such as West Nile virus. Therefore, this perspective, although not aimed at flaviviruses in general, should also be able to provide an overview of the medicinal chemistry of these closely related infectious agents. Topics: Antiviral Agents; Chemistry, Pharmaceutical; Dengue; Dengue Virus; Humans; Molecular Conformation; Structure-Activity Relationship | 2016 |
2 other study(ies) available for s-adenosylhomocysteine and Dengue
Article | Year |
---|---|
Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase.
Methylation of flavivirus RNA is vital for its stability and translation in the infected host cell. This methylation is mediated by the flavivirus methyltransferase (MTase), which methylates the N7 and 2'-O positions of the viral RNA cap by using S-adenosyl-l-methionine (SAM) as a methyl donor. In this report, we demonstrate that SAM, in contrast to the reaction by-product S-adenosyl-l-homocysteine, which was assumed previously, is copurified with the Dengue (DNV) and West Nile virus MTases produced in Escherichia coli (E. coli). This endogenous SAM can be removed by denaturation and refolding of the MTase protein. The refolded MTase of DNV serotype 3 (DNV3) displays methylation activity comparable to native enzyme, and its crystal structure at 2.1 Å is almost identical to that of native MTase. We characterized the binding of Sinefungin (SIN), a previously described SAM-analog inhibitor of MTase function, to the native and refolded DNV3 MTase by isothermal titration calorimetry, and found that SIN binds to refolded MTase with more than 16 times the affinity of SIN binding to the MTase purified natively. Moreover, we show that SAM is also copurified with other flavivirus MTases, indicating that purification by refolding may be a generally applicable tool for studying flavivirus MTase inhibition. Topics: Crystallography, X-Ray; Dengue; Dengue Virus; Humans; Methyltransferases; Models, Molecular; Protein Refolding; S-Adenosylhomocysteine; S-Adenosylmethionine; West Nile Fever; West Nile virus | 2015 |
Structure-based and ligand-based virtual screening of novel methyltransferase inhibitors of the dengue virus.
The dengue virus is the most significant arthropod-borne human pathogen, and an increasing number of cases have been reported over the last few decades. Currently neither vaccines nor drugs against the dengue virus are available. NS5 methyltransferase (MTase), which is located on the surface of the dengue virus and assists in viral attachment to the host cell, is a promising antiviral target. In order to search for novel inhibitors of NS5 MTase, we performed a computer-aided virtual screening of more than 5 million commercially available chemical compounds using two approaches: i) structure-based screening using the crystal structure of NS5 MTase and ii) ligand-based screening using active ligands of NS5 MTase. Structure-based screening was performed using the LIDAEUS (LIgand Discovery At Edinburgh UniverSity) program. The ligand-based screening was carried out using the EDULISS (EDinburgh University LIgand Selection System) program.. The selection of potential inhibitors of dengue NS5 MTase was based on two criteria: the compounds must bind to NS5 MTase with a higher affinity than that of active NS5 MTase ligands, such as ribavirin triphosphate (RTP) and S-adenosyl-L-homocysteine (SAH); and the compounds must interact with residues that are catalytically important for the function of NS5 MTase. We found several compounds that bind strongly to the RNA cap site and the S-adenosyl-L-methionine (SAM) binding site of NS5 MTase with better binding affinities than that of RTP and SAH. We analyzed the mode of binding for each compound to its binding site, and our results suggest that all compounds bind to their respective binding sites by interacting with, and thus blocking, residues that are vital for maintaining the catalytic activity of NS5 MTase.. We discovered several potential compounds that are active against dengue virus NS5 MTase through virtual screening using structure-based and ligand-based methods. These compounds were predicted to bind into the SAM binding site and the RNA cap site with higher affinities than SAH and RTP. These compounds are commercially available and can be purchased for further biological activity tests. Topics: Antiviral Agents; Binding Sites; Dengue; Dengue Virus; Enzyme Inhibitors; High-Throughput Screening Assays; Humans; Ligands; Methyltransferases; Models, Molecular; RNA Caps; S-Adenosylhomocysteine; S-Adenosylmethionine; Viral Nonstructural Proteins | 2011 |