s-adenosylhomocysteine has been researched along with Brain-Ischemia* in 2 studies
2 other study(ies) available for s-adenosylhomocysteine and Brain-Ischemia
Article | Year |
---|---|
The source of brain adenosine outflow during ischemia and electrical stimulation.
Adenosine outflow and adenosine and adenine nucleotide content of hippocampal slices were evaluated under two different experimental conditions: ischemia-like conditions and electrical stimulation (10 Hz). Five minutes of ischemia-like conditions brought about an 8-fold increase in adenosine outflow in the following 5 min during reperfusion, and a 2-fold increase in adenosine content, a 43% decrease in ATP, a 72% increase in AMP and a 30% decrease in energy charge (E.C.) at the end of the ischemic period. After 10 min of reperfusion ATP, AMP and E.C. returned to control values, while the adenosine content was further increased. Five minutes of electrical stimulation brought about an 8-fold increase in adenosine outflow that peaked 5 min after the end of stimulation, a 4-fold increase in adenosine content and an 18% decrease in tissue E.C. at the end of stimulation. After 10 min of rest conditions the adenosine content and E.C. returned to basal values. The origin of extracellular adenosine from S-adenosylhomocysteine (SAH) was examined under the two different experimental conditions. The SAH hydrolase inhibitor, adenosine-2,3-dialdehyde (10 microM), does not significantly modify the adenosine outflow evoked by electrical stimulation or ischemia-like conditions. This finding excludes a significant contribution by the transmethylation pathway to adenosine extracellular accumulation evoked by an electrical or ischemic stimulus, and confirms that the most likely source of adenosine is from AMP dephosphorylation. Topics: Adenine Nucleotides; Adenosine; Adenosylhomocysteinase; Animals; Brain; Brain Ischemia; Chromatography, High Pressure Liquid; Electric Stimulation; Hippocampus; Hydrolases; In Vitro Techniques; Male; Rats; Rats, Wistar; S-Adenosylhomocysteine | 1996 |
Attenuation of ischemia-induced extracellular adenosine accumulation by homocysteine.
The purpose of this study was to determine the effects of homocysteine, which consumes intracellular adenosine via formation of S-adenosylhomocysteine, on interstitial fluid (ISF) adenosine and cerebral blood flow (CBF) before, during, and after cerebral ischemia. Microdialysis probes, used to measure local CBF (H2 clearance) and to sample ISF, were implanted bilaterally into the caudate nucleus of halothane-anesthetized rats (n = 8). L-Homocysteine thiolactone was administered locally via one of the probes. Animals were exposed to 20 min of ischemia, induced by bilateral carotid occlusion plus hemorrhage to an arterial blood pressure of 50 mm Hg, followed by 60 min of reperfusion. Before ischemia, CBF and dialysate adenosine were decreased with homocysteine. During ischemia and early reperfusion, dialysate purine metabolites increased on both sides of the brain; however, the ischemia-induced increase in adenosine was attenuated on the side of local homocysteine. CBF was lower on the side of homocysteine throughout reperfusion. These data demonstrate that homocysteine (a) decreases basal ISF adenosine and CBF, (b) attenuates the increase in dialysate adenosine during ischemia, and (c) reduces hyperemia during early reperfusion. Topics: Adenosine; Analysis of Variance; Animals; Brain; Brain Ischemia; Cerebrovascular Circulation; Dose-Response Relationship, Drug; Extracellular Space; Homocysteine; Hypoxanthine; Hypoxanthines; Inosine; Male; Rats; Rats, Wistar; S-Adenosylhomocysteine | 1993 |