s-1743 and Idiopathic-Pulmonary-Fibrosis

s-1743 has been researched along with Idiopathic-Pulmonary-Fibrosis* in 2 studies

Other Studies

2 other study(ies) available for s-1743 and Idiopathic-Pulmonary-Fibrosis

ArticleYear
Combination of esomeprazole and pirfenidone enhances antifibrotic efficacy in vitro and in a mouse model of TGFβ-induced lung fibrosis.
    Scientific reports, 2022, 11-30, Volume: 12, Issue:1

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease of unknown etiology. Currently, pirfenidone and nintedanib are the only FDA-approved drugs for the treatment of IPF and are now the standard of care. This is a significant step in slowing down the progression of the disease. However, the drugs are unable to stop or reverse established fibrosis. Several retrospective clinical studies indicate that proton pump inhibitors (PPIs; FDA-approved to treat gastroesophageal reflux) are associated with favorable outcomes in patients with IPF, and emerging preclinical studies report that PPIs possess antifibrotic activity. In this study, we evaluated the antifibrotic efficacy of the PPI esomeprazole when combined with pirfenidone in vitro and in vivo. In cell culture studies of IPF lung fibroblasts, we assessed the effect of the combination on several fibrosis-related biological processes including TGFβ-induced cell proliferation, cell migration, cell contraction, and collagen production. In an in vivo study, we used mouse model of TGFβ-induced lung fibrosis to evaluate the antifibrotic efficacy of esomeprazole/pirfenidone combination. We also performed computational studies to understand the molecular mechanisms by which esomeprazole and/or pirfenidone regulate lung fibrosis. We found that esomeprazole significantly enhanced the anti-proliferative effect of pirfenidone and favorably modulated TGFβ-induced cell migration and contraction of collagen gels. We also found that the combination significantly suppressed collagen production in response to TGFβ in comparison to pirfenidone monotherapy. In addition, our animal study demonstrated that the combination therapy effectively inhibited the differentiation of lung fibroblasts into alpha smooth muscle actin (αSMA)-expressing myofibroblasts to attenuate the progression of lung fibrosis. Finally, our bioinformatics study of cells treated with esomeprazole or pirfenidone revealed that the drugs target several extracellular matrix (ECM) related pathways with esomeprazole preferentially targeting collagen family members while pirfenidone targets the keratins. In conclusion, our cell biological, computational, and in vivo studies show that the PPI esomeprazole enhances the antifibrotic efficacy of pirfenidone through complementary molecular mechanisms. This data supports the initiation of prospective clinical studies aimed at repurposing PPIs for the treatment of IPF and other fibrotic lung diseases

    Topics: Animals; Disease Models, Animal; Esomeprazole; Idiopathic Pulmonary Fibrosis; Mice; Prospective Studies; Proton Pump Inhibitors; Retrospective Studies; Transforming Growth Factor beta

2022
Pleiotropic effect of the proton pump inhibitor esomeprazole leading to suppression of lung inflammation and fibrosis.
    Journal of translational medicine, 2015, Aug-01, Volume: 13

    The beneficial outcome associated with the use of proton pump inhibitors (PPIs) in idiopathic pulmonary fibrosis (IPF) has been reported in retrospective studies. To date, no prospective study has been conducted to confirm these outcomes. In addition, the potential mechanism by which PPIs improve measures of lung function and/or transplant-free survival in IPF has not been elucidated.. Here, we used biochemical, cell biological and preclinical studies to evaluate regulation of markers associated with inflammation and fibrosis. In our in vitro studies, we exposed primary lung fibroblasts, epithelial and endothelial cells to ionizing radiation or bleomycin; stimuli typically used to induce inflammation and fibrosis. In addition, we cultured lung fibroblasts from IPF patients and studied the effect of esomeprazole on collagen release. Our preclinical study tested efficacy of esomeprazole in a rat model of bleomycin-induced lung injury. Furthermore, we performed retrospective analysis of interstitial lung disease (ILD) databases to examine the effect of PPIs on transplant-free survival.. The cell culture studies revealed that esomeprazole controls inflammation by suppressing the expression of pro-inflammatory molecules including vascular cell adhesion molecule-1, inducible nitric oxide synthase, tumor necrosis factor-alpha (TNF-α) and interleukins (IL-1β and IL-6). The antioxidant effect is associated with strong induction of the stress-inducible cytoprotective protein heme oxygenase-1 (HO1) and the antifibrotic effect is associated with potent inhibition of fibroblast proliferation as well as downregulation of profibrotic proteins including receptors for transforming growth factor β (TGFβ), fibronectin and matrix metalloproteinases (MMPs). Furthermore, esomeprazole showed robust effect in mitigating the inflammatory and fibrotic responses in a murine model of acute lung injury. Finally, retrospective analysis of two ILD databases was performed to assess the effect of PPIs on transplant-free survival in IPF patients. Intriguingly, this data demonstrated that IPF patients on PPIs had prolonged survival over controls (median survival of 3.4 vs 2 years).. Overall, these data indicate the possibility that PPIs may have protective function in IPF by directly modulating the disease process and suggest that they may have other clinical utility in the treatment of extra-intestinal diseases characterized by inflammatory and/or fibrotic phases.

    Topics: Aged; Animals; Apoptosis; Biomarkers; Bleomycin; Cell Proliferation; Cell Separation; Collagen; Disease Models, Animal; Esomeprazole; Female; Fibroblasts; Gene Expression Regulation; Genetic Pleiotropy; Humans; Idiopathic Pulmonary Fibrosis; Lung; Lung Transplantation; Male; Middle Aged; Pneumonia; Proton Pump Inhibitors; Radiation, Ionizing; Rats, Inbred F344; Solubility; Survival Analysis; Transforming Growth Factor beta

2015