s-1033 has been researched along with Inflammation* in 2 studies
1 review(s) available for s-1033 and Inflammation
Article | Year |
---|---|
Small molecule discoidin domain receptor kinase inhibitors and potential medical applications.
Discoidin domain receptors (DDRs) are members of the transmembrane receptor tyrosine kinase (RTK) superfamily which are distinguished from others by the presence of a discoidin motif in the extracellular domain and their utilization of collagens as internal ligands. Two types of DDRs, DDR1 and DDR2, have been identified with distinct expression profiles and ligand specificities. These DDRs play important roles in the regulation of fundamental cellular process, such as proliferation, survival, differentiation, adhesion, and matrix remodeling. They have also been closely linked to a number of human diseases, including various fibrotic disorders, atherosclerosis, and cancer. As a consequence, DDRs have been considered as novel potential molecular targets for drug discovery and increasing efforts are being devoted to the identification of new small molecule inhibitors targeting the receptors. In this review, we offer a contemporary overview on the discovery of DDRs inhibitors and their potential medical application for the treatment of cancer and inflammation related disorders. Topics: Amino Acid Sequence; Animals; Discoidin Domain Receptors; Drug Discovery; Humans; Inflammation; Ligands; Models, Molecular; Molecular Sequence Data; Neoplasms; Protein Conformation; Protein Kinase Inhibitors; Receptor Protein-Tyrosine Kinases; Receptors, Mitogen; Small Molecule Libraries | 2015 |
1 other study(ies) available for s-1033 and Inflammation
Article | Year |
---|---|
A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Assay Identifies Nilotinib as an Inhibitor of Inflammation in Acute Myeloid Leukemia.
Inflammatory responses are important in cancer, particularly in the context of monocyte-rich aggressive myeloid neoplasm. We developed a label-free cellular phenotypic drug discovery assay to identify anti-inflammatory drugs in human monocytes derived from acute myeloid leukemia (AML), by tracking several features ionizing from only 2500 cells using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. A proof-of-concept screen showed that the BCR-ABL inhibitor nilotinib, but not the structurally similar imatinib, blocks inflammatory responses. In order to identify the cellular (off-)targets of nilotinib, we performed thermal proteome profiling (TPP). Unlike imatinib, nilotinib and other later-generation BCR-ABL inhibitors bind to p38α and inhibit the p38α-MK2/3 signaling axis, which suppressed pro-inflammatory cytokine expression, cell adhesion, and innate immunity markers in activated monocytes derived from AML. Thus, our study provides a tool for the discovery of new anti-inflammatory drugs, which could contribute to the treatment of inflammation in myeloid neoplasms and other diseases. Topics: Cytokines; Drug Resistance, Neoplasm; Fusion Proteins, bcr-abl; Humans; Imatinib Mesylate; Inflammation; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leukemia, Myeloid, Acute; Protein Kinase Inhibitors; Proteome; Pyrimidines; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization | 2022 |