ryanodine has been researched along with Insulinoma* in 2 studies
2 other study(ies) available for ryanodine and Insulinoma
Article | Year |
---|---|
Involvement of calcium-mediated apoptotic signals in H2O2-induced MIN6N8a cell death.
Reactive oxygen species are believed to be the central mediators of beta-cell destruction that leads to type 1 and 2 diabetes, and calcium has been reported to be an important mediator of beta cell death. In the present study, the authors investigated whether Ca(2+) plays a role in hydrogen peroxide (H(2)O(2))-induced MIN6N8a mouse beta cell death. Treatment with low concentration H(2)O(2) (50 microM) was found to be sufficient to reduce MIN6N8a cell viability by 55%, largely via apoptosis. However, this H(2)O(2)-induced cell death was near completely blocked by pretreatment with BAPTA/AM (5 microM), a chelator of intracellular Ca(2+). Moreover, the intracellular calcium store channel blockers, such as, xestospongin c and ryanodine, significant protected cells from 50 microM H(2)O(2)-induced cell death and under extracellular Ca(2+)-free conditions, 50 microM H(2)O(2) elicited transient [Ca(2+)](i) increases. In addition, pharmacologic inhibitors of calpain, calcineurin, and calcium/calmodulin-dependent protein kinase II were found to have a protective effect on H(2)O(2)-induced death. Moreover, H(2)O(2)-induced apoptotic signals, such as c-JUN N-terminal kinase activation, cytochrome c release, caspase 3 activation, and poly (ADP-ribose) polymerase cleavage were all down-regulated by the intracellular Ca(2+) chelation. These findings show that [Ca(2+)](i) elevation, possibly due to release from intracellular calcium stores and the subsequent activation of Ca(2+)-mediated apoptotic signals, critically mediates low concentration H(2)O(2)-induced MIN6N8a cell death. These findings suggest that a breakdown of calcium homeostasis by low level of reactive oxygen species may be involved in beta cell destruction during diabetes development. Topics: Animals; Apoptosis; Calcineurin; Calcineurin Inhibitors; Calcium; Calpain; Caspase 3; Cell Line, Tumor; Cell Survival; Chelating Agents; Dose-Response Relationship, Drug; Egtazic Acid; Enzyme Activation; Enzyme Inhibitors; Hydrogen Peroxide; Insulinoma; Intracellular Fluid; JNK Mitogen-Activated Protein Kinases; Macrocyclic Compounds; Oxazoles; Oxidants; Poly(ADP-ribose) Polymerases; Ryanodine; Signal Transduction | 2006 |
Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization.
In the insulin-secreting beta-cell line beta TC3, stimulation with 11.2 mmol/l glucose caused a rise in the intracellular free Ca2+ concentration ([Ca2+]i) in only 18% of the tested cells. The number of glucose-responsive cells increased after pretreatment of the cells with glucagon-like peptide I (GLP-I)(7-36)amide and at 10(-11) mol/l; 84% of the cells responded to glucose with a rise in [Ca2+]i. GLP-I(7-36)amide induces a rapid increase in [Ca2+]i only in cells exposed to elevated glucose concentrations (> or = 5.6 mmol/l). The action of GLP-I(7-36)amide and forskolin involved a 10-fold increase in cytoplasmic cAMP concentration and was mediated by activation of protein kinase A. It was not associated with an effect on the membrane potential but required some (small) initial entry of Ca2+ through voltage-dependent L-type Ca2+ channels, which then produced a further increase in [Ca2+]i by mobilization from intracellular stores. The latter effect reflected Ca(2+)-induced Ca2+ release and was blocked by ryanodine. Similar increases in [Ca2+]i were also observed in voltage-clamped cells, although there was neither activation of a background (Ca(2+)-permeable) inward current nor enhancement of the voltage-dependent L-type Ca2+ current. These observations are consistent with GLP-I(7-36) amide inducing glucose sensitivity by promoting mobilization of Ca2+ from intracellular stores. We propose that this novel action of GLP-I(7-36)amide represents an important factor contributing to its insulinotropic action. Topics: Animals; Calcium; Calcium Channels; Cell Line; Colforsin; Cyclic AMP; Cytoplasm; Dose-Response Relationship, Drug; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Inositol Phosphates; Insulin; Insulin Secretion; Insulinoma; Islets of Langerhans; Kinetics; Mice; Mice, Transgenic; Pancreatic Neoplasms; Peptide Fragments; Ryanodine; Time Factors; Tumor Cells, Cultured | 1995 |