ryanodine has been researched along with Endotoxemia* in 2 studies
2 other study(ies) available for ryanodine and Endotoxemia
Article | Year |
---|---|
The role of nitric oxide on contractile impairment during endotoxemia in rat diaphragm muscle.
We examined the contribution of nitric oxide (NO) on the contractile impairment in diaphragm muscles of endotoxemic rats. Force-frequency relationship was depressed 24 h after lipopolysaccharide administration. 7-Nitroindazole, aminoguanidine and 1H-[1,2,4]Oxadiazole (4,3-a)quinoxalin-1-one (ODQ) partially restored the contractile impairment, Nomega-Nitro-L-Arginine (L-NNA) was ineffective. K+ contractions were reduced by 50% in endotoxemic muscles, 7-nitroindazole partially recovered, while aminoguanidine and L-NNA were ineffective. Verapamil reduced contractility to a greater extent in endotoxemic muscles. Caffeine and ryanodine contractions were augmented during endotoxemia without NOS contribution. L-NNA, 7-nitroindazole, ODQ and hemoglobin did not affect, but aminoguanidine completely restored partially inhibited neurotransmission by d-tubocurarine. Endotoxemia did not change membrane potentials and neurotransmitter release but slightly increased excitability. At this stage of endotoxemia, (1) constitutive NOS appears to be the dominant isoform, (2) NO does not have a major role on contractile dysfunction and (3) impairment could be explained by altered sensitivity of the voltage sensor. (4) NO does not substantially modulate neuromuscular transmission in normal and endotoxemic rats. Topics: Animals; Caffeine; Diaphragm; Endotoxemia; Enzyme Inhibitors; Guanidines; In Vitro Techniques; Indazoles; Lipopolysaccharides; Male; Muscle Contraction; Neuromuscular Nondepolarizing Agents; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Oxadiazoles; Quinoxalines; Rats; Rats, Wistar; Ryanodine; Tubocurarine; Vasodilator Agents; Verapamil | 2004 |
Nitric oxide is not involved in the endotoxemia-induced alterations in Ca2+ and ryanodine responses in mouse diaphragms.
Lipopolysaccharide (LPS, endotoxin)-induced diaphragmatic contractile dysfunction and sarcolemmal injury in animals has been identified. However, the precise nature of sepsis-related alterations in diaphragm myofiber function and the activity of Ca(2+) release from sarcoplasmic reticulum of skeletal muscle remain unclear. The present study investigated the in vivo effects of LPS on the Ca(2+)-dependent mechanical activity and ryanodine response in mouse diaphragm and Ca(2+) release from isolated sarcoplasmic reticulum membrane vesicles, and aimed to examine the role of nitric oxide (NO) in these responses. When diaphragms were bathed in a solution that was Cl(-)-free, Na(+)-free, but contained high K(+), a Ca(2+)-induced contracture was elicited. Increases in external Ca(2+) concentration produced increases in peak tension of Ca(2+)-induced contracture in control diaphragm, while a decrease was seen in endotoxemic diaphragm. Ryanodine induced a marked contracture in control diaphragms, which was diminished after endotoxemia. This finding is correlated with the decrease of ryanodine-induced Ca(2+) release and the suppression of [(3)H]ryanodine binding on the isolated SR of the skeletal muscle from LPS-treated rats. In mice treated with LPS significantly increased levels of plasma nitrite and serum TNF-alpha were observed, changes inhibited by aminoguanidine [an inhibitor of inducible NO synthase (iNOS)] and pentoxifylline (an inhibitor of tumor necrosis factor-alpha formation), respectively. Moreover, LPS treatment resulted in a significant expression of mRNA for iNOS in mouse diaphragms. The inhibitory effects on Ca(2+)- and ryanodine responses by LPS could be prevented by treatment with polymyxin B (LPS neutralizer) and pentoxifylline, but not by treatment with dexamethasone, N(G)-nitro- L-arginine or aminoguanidine (NOS inhibitors). These results imply that the NO-related pathway may not be involved in the dysfunction of the Ca(2+) release mechanism in the sarcoplasmic reticulum of mouse diaphragm during endotoxemia. Topics: Animals; Calcium; Diaphragm; Endotoxemia; Lipopolysaccharides; Male; Mice; Mice, Inbred ICR; Muscle Contraction; Nitric Oxide; Nitric Oxide Synthase; Rats; Rats, Wistar; Ryanodine | 2002 |