ryanodine and Chronic-Pain

ryanodine has been researched along with Chronic-Pain* in 2 studies

Other Studies

2 other study(ies) available for ryanodine and Chronic-Pain

ArticleYear
Regulation of Expression of Hyperalgesic Priming by Estrogen Receptor α in the Rat.
    The journal of pain, 2017, Volume: 18, Issue:5

    Hyperalgesic priming, a sexually dimorphic model of transition to chronic pain, is expressed as prolongation of prostaglandin E2-induced hyperalgesia by the activation of an additional pathway including an autocrine mechanism at the plasma membrane. The autocrine mechanism involves the transport of cyclic adenosine monophosphate (AMP) to the extracellular space, and its conversion to AMP and adenosine, by ecto-5'phosphodiesterase and ecto-5'nucleotidase, respectively. The end product, adenosine, activates A1 receptors, producing delayed onset prolongation of prostaglandin E2 hyperalgesia. We tested the hypothesis that the previously reported, estrogen-dependent, sexual dimorphism observed in the induction of priming is present in the mechanisms involved in its expression, as a regulatory effect on ecto-5'nucleotidase by estrogen receptor α (EsRα), in female rats. In the primed paw AMP hyperalgesia was dependent on conversion to adenosine, being prevented by ecto-5'nucleotidase inhibitor α,β-methyleneadenosine 5'-diphosphate sodium salt and A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. To investigate an interaction between EsRα and ecto-5'nucleotidase, we treated primed female rats with oligodeoxynucleotide antisense or mismatch against EsRα messenger RNA. Whereas in rats treated with antisense AMP-induced hyperalgesia was abolished, the A1 receptor agonist N. This study presents evidence of an estrogen-dependent mechanism of expression of chronic pain in female rats, supporting the suggestion that differential targets must be considered when establishing protocols for the treatment of painful conditions in men and women.

    Topics: 5'-Nucleotidase; Adenosine; Adenosine A1 Receptor Antagonists; Adenosine Monophosphate; Animals; Chronic Pain; Dinoprostone; Disease Models, Animal; DNA, Antisense; Estrogen Receptor alpha; Female; Gene Expression Regulation; Hyperalgesia; Male; Pain Threshold; Rats; Rats, Sprague-Dawley; Ryanodine; Sex Factors; Time Factors; Xanthines

2017
Marked Sexual Dimorphism in the Role of the Ryanodine Receptor in a Model of Pain Chronification in the Rat.
    Scientific reports, 2016, 08-08, Volume: 6

    Hyperalgesic priming, an estrogen dependent model of the transition to chronic pain, produced by agonists at receptors that activate protein kinase C epsilon (PKCε), occurs in male but not in female rats. However, activation of second messengers downstream of PKCε, such as the ryanodine receptor, induces priming in both sexes. Since estrogen regulates intracellular calcium, we investigated the interaction between estrogen and ryanodine in the susceptibility to develop priming in females. The lowest dose of ryanodine able to induce priming in females (1 pg) is 1/100,000(th) that needed in males (100 ng), an effect dependent on the activation of ryanodine receptors. Treatment of female rats with antisense to estrogen receptor alpha (ERα), but not beta (ERβ), mRNA, prevented the induction of priming by low dose ryanodine, and the ERα agonist, PPT, induced ryanodine receptor-dependent priming. In vitro application of ryanodine in low concentration (2 nM) to small DRG neurons cultured from females, significantly potentiated calcium release via ryanodine receptors induced by caffeine. This effect was only observed in IB4+ neurons, cultured in the presence of β-estradiol or PPT. Our results demonstrate a profound regulatory role of ERα in ryanodine receptor-dependent transition to chronic pain.

    Topics: Animals; Calcium; Calcium Signaling; Cells, Cultured; Chronic Pain; Dose-Response Relationship, Drug; Estrogen Receptor alpha; Estrogen Receptor beta; Female; Hyperalgesia; Male; Neurons; Pain Measurement; Rats; Rats, Sprague-Dawley; RNA, Messenger; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sex Characteristics

2016