rx-3117 and Disease-Models--Animal

rx-3117 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for rx-3117 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
A novel cytidine analog, RX-3117, shows potent efficacy in xenograft models, even in tumors that are resistant to gemcitabine.
    Anticancer research, 2014, Volume: 34, Issue:12

    RX-3117 (fluorocyclopentenylcytosine) is a cytidine analog and this class of drugs, including gemcitabine, has been widely used for the treatment of various types of cancers. However, there is no oral formulation of gemcitabine and drug resistance to gemcitabine is common. In this study, the efficacy of orally-administered RX-3117 was examined in 9 different human tumor xenograft models (colon, non-small cell lung, small cell lung, pancreatic, renal and cervical), grown subcutaneously in athymic nude mice. In the Colo 205, H460, H69 and CaSki models, gemcitabine treatment resulted in 28%, 30%, 25% and 0% tumor growth inhibition (TGI), respectively, whereas oral treatment with RX-3117 induced 100%, 78%, 62% and 66% TGI, respectively. This indicates that RX-3117 may have the potential to be used for the treatment of tumors that do not respond to gemcitabine. RX-3117 was also evaluated in a single primary low-passage human pancreatic Tumorgraft™CTG-0298 (TGI 76%), which is relatively resistant to gemcitabine (TGI 38%) and has a favorable RX-3117-activating enzyme profile. These studies demonstrated the therapeutic potential and anticancer efficacy of RX-3117.

    Topics: Administration, Oral; Animals; Antimetabolites, Antineoplastic; Cell Line, Tumor; Cytidine; Deoxycytidine; Disease Models, Animal; Drug Resistance, Neoplasm; Female; Gemcitabine; HCT116 Cells; HT29 Cells; Humans; Mice; Mice, Nude; Neoplasms; Xenograft Model Antitumor Assays

2014