rwj-416457 and Tuberculosis--Pulmonary

rwj-416457 has been researched along with Tuberculosis--Pulmonary* in 1 studies

Other Studies

1 other study(ies) available for rwj-416457 and Tuberculosis--Pulmonary

ArticleYear
Contribution of Oxazolidinones to the Efficacy of Novel Regimens Containing Bedaquiline and Pretomanid in a Mouse Model of Tuberculosis.
    Antimicrobial agents and chemotherapy, 2016, Volume: 60, Issue:1

    New regimens based on two or more novel agents are sought to shorten or simplify treatment of tuberculosis (TB). Pretomanid (PMD) is a nitroimidazole in phase 3 trials that has significant bactericidal activity alone and in combination with bedaquiline (BDQ) and/or pyrazinamide (PZA). We previously showed that the novel combination of BDQ+PMD plus the oxazolidinone sutezolid (SZD) had sterilizing activity superior to that of the first-line regimen in a murine model of TB. The present experiments compared the activity of different oxazolidinones in combination with BDQ+PMD with or without PZA in the same model. The 3-drug regimen of BDQ+PMD plus linezolid (LZD) had sterilizing activity approaching that of BDQ+PMD+SZD and superior to that of the first-line regimen. The addition of PZA further enhanced activity. Reducing the duration of LZD to 1 month did not significantly affect the activity of the regimen. Halving the LZD dose or replacing LZD with RWJ-416457 modestly reduced activity over the first month but not after 2 months. AZD5847 and tedizolid also increased the bactericidal activity of BDQ+PMD, but they were less effective than the other oxazolidinones. These results provide optimism for safe, short-course oral regimens for drug-resistant TB that may also be superior to the current first-line regimen for drug-susceptible TB.

    Topics: Animals; Antitubercular Agents; Bacterial Load; Diarylquinolines; Disease Models, Animal; Drug Administration Schedule; Drug Combinations; Drug Resistance, Multiple, Bacterial; Drug Synergism; Female; Linezolid; Lung; Mice; Mice, Inbred BALB C; Mycobacterium tuberculosis; Nitroimidazoles; Organophosphates; Oxazoles; Oxazolidinones; Pyrazinamide; Time Factors; Treatment Outcome; Tuberculosis, Pulmonary

2016