ruscogenin and Chronic-Disease

ruscogenin has been researched along with Chronic-Disease* in 2 studies

Other Studies

2 other study(ies) available for ruscogenin and Chronic-Disease

ArticleYear
Inhibition of OAT1/3 and CMPF uptake attenuates myocardial ischemia-induced chronic heart failure via decreasing fatty acid oxidation and the therapeutic effects of ruscogenin.
    Translational research : the journal of laboratory and clinical medicine, 2023, Volume: 261

    Chronic heart failure (CHF) as a long-term disease is highly prevalent in elder people worldwide. Early diagnosis and treatments are crucial for preventing the development of CHF. Herein, we aimed to identify novel diagnostic biomarker, therapeutic target and drug for CHF. Untargeted metabolomic analysis has been used to characterize the different metabolomic profile between CHF patients and healthy people. Meanwhile, the targeted metabolomic study demonstrated the elevation of 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) in the serum of CHF patients and coronary artery ligation-induced CHF mice. Subsequently, we firstly observed that elevation of CMPF impaired cardiac function and aggravated myocardial injury by enhancing fatty acid oxidation (FAO). Interestingly, inhibition of responsible transporters organic anion transporter 1/3 (OAT1/3) has been found to decrease the CMPF level, and suppress FAO-related key protein expressions including peroxisome proliferator-activated receptor alpha, peroxisome proliferative activated receptor-α, carnitine palmitoyl transferase 1, and malonyl CoA decarboxylase in coronary artery ligation-induced CHF mice. Meanwhile, the inhibitor of OAT1/3 presented an excellent improvement in cardiac function and histological injury. Based on the above findings, molecular docking was adopted to screen the potential therapeutic drug targeting OAT1/3, and ruscogenin (RUS) exhibited a great binding affinity with OAT1 and OAT3. Next, it was verified that RUS could remarkedly decrease the expression of OAT1/3 and CMPF levels in heart tissue of CHF mice, as well as suppress the expression of FAO-related proteins. What's more, RUS can effectively improve cardiac function, myocardial fibrosis and morphological damage. Collectively, this study provided a potential metabolic marker CMPF and novel target OAT1/3 for CHF, which were demonstrated to be involved in FAO. And RUS was identified as a potential anti-FAO drug for CHF by regulating OAT1/3.

    Topics: Aged; Animals; Chronic Disease; Coronary Artery Disease; Fatty Acids; Heart Failure; Humans; Mice; Molecular Docking Simulation; Myocardial Ischemia

2023
Potent therapeutic effects of ruscogenin on gastric ulcer established by acetic acid.
    Asian journal of surgery, 2020, Volume: 43, Issue:2

    The present study investigated the potent therapeutic effects of Ruscogenin, main steroid sapogenin of traditional Chinese plant called 'Ophiopogon japonicas', on chronic ulcer model established with acetic acid in rats.. 24 rats were attenuated to the sham (2 ml/kg/day isotonic solution), control (untreated ulcer) and treatment (3 ml/kg/day ruscogenin) groups. After treatment for 2 weeks, gastric tissues were collected and prepared for light microscopic (H&E), immunohistochemical (Collagen I, III and IV) and biochemical analysis [Epidermal growth factor (EGF), Prostaglandin E2 (PGE2), Tumor Necrosis Factor alpha (TNF-α), Interleukin 6 and 8 (IL-6 and IL-8), Lipid Peroxidase (LPO), Myeloperoxidase (MPO), Glutathione (GSH) and Glutathione Peroxidase (GSH-Px)] and transmission electron microscopy (TEM).. Macroscopic scoring showed that the ulceration area of ruscogenin-treated group decreased compared with control group. Immunohistochemical analysis revealed ruscogenin ameliorated and restored the levels of Collagen I and IV to the levels of sham group. Tissue levels of EGF and PGE2 enhanced significantly in untreated ulcer group while were higher in treated ulcer group than the control group. TNF-α, IL-6, IL-8, LPO, MPO levels increased significantly in control group whereas decreased in treated rats after ruscogenin treatment. However, levels of GSH and GSH-Px increased significantly in treatment group. TEM showed chief cells and parietal cells of ulcer group having degenerated organelles while ruscogenin group had normal ultrastructure of cells.. There are potent anti-inflammatory and anti-oxidant effects of ruscogenin on gastric ulcer and may be successfully used as a safe and therapeutic agent in treatment of peptic ulcer.

    Topics: Animals; Chronic Disease; Collagen; Cytokines; Dinoprostone; Disease Models, Animal; Epidermal Growth Factor; Female; Microscopy, Electron, Transmission; Ophiopogon; Parietal Cells, Gastric; Peroxidases; Phytotherapy; Rats, Sprague-Dawley; Spirostans; Stomach Ulcer; Tumor Necrosis Factor-alpha

2020