rusalatide-acetate has been researched along with Hypercholesterolemia* in 2 studies
2 other study(ies) available for rusalatide-acetate and Hypercholesterolemia
Article | Year |
---|---|
Effect of dimerized thrombin fragment TP508 on acute myocardial ischemia reperfusion injury in hypercholesterolemic swine.
The thrombin-related peptide TP508 is a 23-amino acid monomer that represents a portion of the receptor binding domain in the thrombin molecule. TP508 is also known to readily convert to a dimer in an aqueous environment. In this study the dimeric form of TP508 was investigated in a porcine model of acute myocardial ischemia reperfusion injury (and compared with its monomer). Twenty-four hypercholesterolemic pigs underwent 60 min of mid-left anterior descending coronary artery occlusion followed by 120 min of reperfusion and received either vehicle (n = 6), TP508 monomer (n = 6), or two different doses of dimer (n = 6). Infarct size was significantly reduced in the monomer and two dimer groups compared with vehicle. Improvement in both endothelium-dependent and -independent coronary microvascular relaxations was also observed in treated groups. In addition, the expression of 27-kDa heat shock protein, alphaB-crystalline, and phosphorylated B-cell lymphoma 2 (Ser70) in the ischemic area at risk were higher in treated groups than in vehicle, whereas the expression of cleaved poly-ADP ribose polymerase was lower in treated groups. Finally, there were fewer apoptotic cells in treated groups than in vehicle. This study suggests that TP508 dimer provides a myocardial-protective effect on acute ischemia reperfusion injury in hypercholesterolemic swine, similar to TP508 monomer, by up-regulating cell survival pathways or down-regulating apoptotic pathways. Topics: Acute Disease; Animals; Apoptosis; Blood Glucose; Coronary Vessels; Dimerization; Drug Stability; Endothelium, Vascular; Hypercholesterolemia; In Vitro Techniques; Lipids; Microvessels; Muscle Relaxation; Muscle, Smooth, Vascular; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Peptide Fragments; Solutions; Swine; Thrombin; Ventricular Function, Left | 2010 |
Effect of thrombin fragment (TP508) on myocardial ischemia-reperfusion injury in hypercholesterolemic pigs.
Myocardial ischemia-reperfusion (IR) injury occurs frequently in the setting of hypercholesterolemia. We investigated the potential efficacy of a novel thrombin fragment (TP508) on IR injury in a hypercholesterolemic porcine model. Twenty-one hypercholesterolemic male Yucatan pigs underwent 60 min of mid-left anterior descending coronary artery occlusion followed by 120 min of reperfusion. Pigs received either placebo (control, n = 7) or TP508 in two doses (TP508 low dose, n = 7, as bolus of 0.5 mg/kg 50 min into ischemia and an infusion of 1.25 mg.kg(-1).h(-1) during reperfusion period or TP508 high dose, n = 7, a double dose of TP508 low-dose group). Myocardial function was monitored throughout the experiment. The area at risk and myocardial necrosis were determined by Monastryl blue/triphenyl tetrazolium chloride staining. Apoptosis in the ischemic territory was assessed. Coronary microvascular reactivity to endothelium-dependent and -independent factors was measured. Myocardial necrosis was lower in both TP508-treated groups vs. control (P < 0.05). Regional left ventricular function was improved only in the TP508 high-dose group (P < 0.05). Endothelium-dependent coronary microvascular reactivity was greater in both TP508-treated groups (P < 0.05) vs. control. The expression of proteins favoring cell survival, 90-kDa heat shock protein and phospho-Bad (Ser112) was higher in the TP508 high-dose group (P < 0.05). The expression of the cell death signaling proteins, cleaved caspase-3 (P < 0.05), apoptosis-inducing factor (P < 0.05), and poly-ADP ribose polymerase (P = 0.07) was lower in the TP508 low-dose group vs. TP508 high-dose and control. The terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling positive cell count was lower in both TP508 groups compared with the control (P < 0.05). This study demonstrates that, in hypercholesterolemic pigs, TP508 decreases myocardial necrosis and apoptosis after IR. Thus TP508 may offer a novel approach in protecting the myocardium from IR injury. Topics: Animals; Apoptosis; Coronary Circulation; Coronary Occlusion; Disease Models, Animal; Heart; HSP90 Heat-Shock Proteins; Hypercholesterolemia; Male; Microvessels; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Necrosis; Peptide Fragments; Swine; Swine, Miniature; Thrombin; Ventricular Dysfunction, Left | 2009 |