rumenic-acid has been researched along with Obesity* in 4 studies
4 other study(ies) available for rumenic-acid and Obesity
Article | Year |
---|---|
Trans-10,cis-12-conjugated linoleic acid worsens renal pathology and alters cyclooxygenase derived oxylipins in obesity-associated nephropathy.
Dietary conjugated linoleic acid (CLA) reduces indicators of early renal disease progression and the associated elevated cyclooxygenase (COX) levels in young obese rats with obesity-associated nephropathy (OAN). Therefore, renal function and injury and COX and its metabolites were assessed in obese fa/fa Zucker rats with more advanced renal disease. Obese rats at 16 weeks of age were provided with either cis(c)9, trans(t)11 (fa/fa-9,11) or t10,c12 (fa/fa-10,12) CLA for 8 weeks, and compared to lean (lean-CTL) and obese (fa/fa-CTL) rats provided the control diet without CLA. Obese rats displayed significantly reduced renal function and increased renal injury compared to lean rats. In the obese rat groups, glomerular hypertrophy was reduced in both CLA-supplemented groups. While all other measures of renal function or injury were not different in fa/fa-9,11 compared to fa/fa-CTL rats, the fa/fa-10,12 rats had greater renal hypertrophy, glomerular fibrosis, fibrosis, tubular casts and macrophage infiltration compared to the fa/fa-CTL and fa/fa-9,11 groups. The fa/fa-10,12 group also had elevated levels of renal COX1, which was associated with increased levels of two oxylipins produced by this enzyme, 6-keto-prostaglandin F(1α), and thromboxane B₂. Renal linoleic acid and its lipoxygenase products also were lower in obese compared to lean rats, but CLA supplementation had no effect on these or any other lipoxygenase oxylipins. In summary, supplementation with c9,t11 CLA did not improve more advanced OAN and t10,c12 CLA worsened the renal pathology. Altered production of select COX1 derived oxylipins was associated with the detrimental effect of the t10,c12 isomer. Topics: 6-Ketoprostaglandin F1 alpha; Aging; Animals; Cyclooxygenase 1; Dietary Supplements; Disease Progression; Fibrosis; Hypertrophy; Kidney; Linoleic Acids, Conjugated; Macrophage Activation; Membrane Proteins; Obesity; Oxylipins; Rats, Zucker; Renal Insufficiency; Severity of Illness Index; Thromboxane B2 | 2015 |
Dietary CLA combined with palm oil or ovine fat differentially influences fatty acid deposition in tissues of obese Zucker rats.
The effect of dietary conjugated linoleic acid (CLA) supplementation in combination with fat from vegetable versus animal origin on the fatty acid deposition, including that of individual 18:1 and 18:2 (conjugated and non-conjugated) isomers, in the liver and muscle of obese rats was investigated. For this purpose, 32 male Zucker rats were randomly assigned to one of four diets containing palm oil or ovine fat, supplemented or not with 1% of 1:1 cis(c)9,trans(t)11 and t10,c12 CLA isomers mixture. Total fatty acid content decreased in the liver and muscle of CLA-fed rats. In the liver, CLA increased saturated fatty acids (SFA) in 11.9% and decreased monounsaturated fatty acids (MUFA) in 6.5%. n-3 Polyunsaturated fatty acids (PUFA) relative proportions were increased in 30.6% by CLA when supplemented to the ovine fat diet. In the muscle, CLA did not affect SFA but decreased MUFA and PUFA percentages. The estimation of Δ9-indices 16 and 18 suggested that CLA inhibited the stearoyl-CoA desaturase activity in the liver (a decrease of 13-38%), in particular when supplemented to the ovine fat diet. Concerning CLA supplementation, the t10,c12 isomer percentage was 60-80% higher in the muscle than in the liver. It is of relevance that rats fed ovine fat, containing bio-formed CLA, had more c9,t11 CLA isomer deposited in both tissues than rats fed palm oil plus synthetic CLA. These results highlight the importance to further clarify the biological effects of consuming foods naturally enriched in CLA, alternatively to CLA dietary supplementation. Topics: Adipose Tissue; Animals; Body Composition; Chromatography, High Pressure Liquid; Dietary Fats; Dose-Response Relationship, Drug; Fatty Acids, Monounsaturated; Fatty Acids, Unsaturated; Linoleic Acids, Conjugated; Lipid Metabolism; Liver; Male; Muscles; Obesity; Palm Oil; Plant Oils; Rats; Rats, Zucker; Sheep, Domestic; Stearoyl-CoA Desaturase | 2012 |
Inter-organ proteomic analysis reveals insights into the molecular mechanisms underlying the anti-diabetic effects of cis-9, trans-11-conjugated linoleic acid in ob/ob mice.
cis-9, trans-11-Conjugated linoleic acid (c9 t11 CLA) exerts anti-diabetic effects by improving systemic insulin sensitivity and inflammation. Levels of CLA in beef can be increased by feeding cattle on pasture. This study aimed to explore the efficacy of a CLA-rich diet (0.6% w/w c9 t11 CLA), presented as beef enriched with CLA or beef supplemented with synthetic CLA (c9 t11 CLA), for 28 days on molecular biomarkers of the metabolic syndrome, and adipose, hepatic, and skeletal muscle proteome in male ob/ob mice. Despite equal weight gain, CLA-fed mice had lower plasma glucose, insulin, non-esterified fatty acid, triacylglycerol and interleukin-6, and higher adiponectin concentrations than controls. c9 t11 CLA induced differential regulation of redox status across all tissues, and decreased hepatic and muscle endoplasmic reticulum stress. CLA also modulated mechanistic links between the actin cytoskeleton, insulin signalling, glucose transport and inflammation in the adipose tissue. In the liver and muscle, c9 t11 CLA improved metabolic flexibility through co-ordination between carbohydrate and energy metabolism. c9 t11 CLA may ameliorate systemic insulin sensitivity in obesity-induced diabetes by altering cellular stress and redox status, and modulating nutrient handling in key insulin-sensitive tissues through complex biochemical interplay among representative proteomic signatures. Topics: Adiponectin; Adipose Tissue; Animals; Blood Glucose; Fatty Acids, Nonesterified; Gene Expression; Hypoglycemic Agents; Insulin; Insulin Resistance; Interleukin-6; Linoleic Acids, Conjugated; Liver; Male; Mice; Mice, Inbred C57BL; Muscle, Skeletal; Obesity; Triglycerides | 2012 |
Differential effects of conjugated linoleic acid isomers in insulin-resistant female C57Bl/6J mice.
Obesity is associated with a high risk of developing diabetes and cardiovascular disease. Therefore, management of body weight to prevent obesity remains as an important priority. The present investigation addresses the effects of conjugated linoleic acid (CLA) isomers on body weight and composition of body fat in female C57Bl/6J mice. To investigate the differential effects of individual CLA isomers and their mixture on changes in lean mass, fat mass, glucose and insulin, 6-month-old female C57BL/6J mice were fed with 10% corn oil (CO) as a dietary fat source and either supplemented with purified cis 9,trans 11 (c9t11) CLA (0.5%) or trans 10,cis 12 (t10c12) CLA (0.5%) and/or their mixture (50:50) for 6 months. As a result of 6 months' dietary intervention, both the t10c12-CLA and CLA mix showed increased lean mass and reduced fat mass compared to the CO and c9t11-CLA groups. Insulin resistance was, however, increased in t10c12-CLA and CLA mix-fed groups based on the results of homeostasis model assessment (HOMA), the revised quantitative insulin-sensitivity check index (R-QUICKI) and also with intravenous glucose tolerance test (IVGTT). In conclusion, long-term feeding of the major CLA isomers in 12-month-old C57Bl/6J mice revealed a contrasting effect on fat mass, glucose and insulin metabolism. The t10c12 isomer is found to reduce the fat mass and increase the lean mass but significantly contributed to increase insulin resistance and liver steatosis, whereas c9t11 isomer prevented the insulin resistance. Topics: Aging; Animals; Biomarkers; Body Constitution; Corn Oil; Dietary Fats, Unsaturated; Fatty Liver; Female; Glucose Intolerance; Hypertriglyceridemia; Inflammation Mediators; Insulin Resistance; Isomerism; Linoleic Acids, Conjugated; Mice; Mice, Inbred C57BL; Obesity; Sarcopenia; Time Factors | 2010 |