rumenic-acid has been researched along with Atherosclerosis* in 4 studies
1 trial(s) available for rumenic-acid and Atherosclerosis
Article | Year |
---|---|
Effect of supplementation with an 80:20 cis9,trans11 conjugated linoleic acid blend on the human platelet proteome.
The dietary fatty acid cis9,trans11 conjugated linoleic acid (cis9,trans11 CLA) has been shown to modify the function of endothelial cells, monocytes, and platelets, all of which are involved in the development of atherosclerosis. Potential mechanisms for the platelet effects have not been assessed previously. In this study, we assessed how supplementation of the diet with an 80:20 cis9,trans11 CLA blend affects the platelet proteome.. In a double-blind, randomized, placebo-controlled, parallel-group trial, 40 overweight but apparently healthy adults received either 4 g per day of cis9,trans11 CLA-enriched oil or placebo oil, consisting of palm oil and soybean oil, for 3 months. Total platelet proteins were extracted from washed platelets, separated using two-dimensional gel electrophoresis and differentially regulated protein spots were identified by LC-ESI-MS/MS. Supplementation with the CLA blend, compared with placebo, resulted in significant alterations in levels of 46 spots (p < 0.05), of which 40 were identified. Network analysis revealed that the majority of these proteins participate in regulation of the cytoskeleton and platelet structure, as well as receptor action, signaling, and focal adhesion.. The platelet proteomics approach revealed novel insights into regulation of cellular biomarkers of atherogenic and thrombotic pathways by an 80:20 cis9,trans11 CLA blend. Topics: Atherosclerosis; Biomarkers; Blood Platelets; Body Mass Index; Cell Adhesion Molecules; Chromatography, High Pressure Liquid; Cytoskeletal Proteins; Dietary Supplements; Double-Blind Method; Electrophoresis, Gel, Two-Dimensional; Female; Humans; Linoleic Acids, Conjugated; Male; Middle Aged; Overweight; Signal Transduction; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Thrombosis | 2012 |
3 other study(ies) available for rumenic-acid and Atherosclerosis
Article | Year |
---|---|
Divergent effects of a CLA-enriched beef diet on metabolic health in ApoE-/- and ob/ob mice.
Conjugated linoleic acid (CLA) is found naturally in meat and dairy products, and represents a potential therapeutic functional nutrient. However, given the discrepancies in isomer composition and concentration, controversy surrounds its proposed antidiabetic, antiobesity effects. This study focused on the effects of CLA-enriched beef (composed predominantly of c9, t11-CLA) in two separate models of metabolic disease: proatherosclerotic ApoE(-/-) mice and diabetic, leptin-deficient ob/ob mice. Animals were fed CLA-enriched beef for 28 days, and markers of the metabolic syndrome and atherosclerosis were assessed. Comprehensive hepatic transcriptomic analysis was completed to understand divergent metabolic effects of CLA. CLA-enriched beef significantly reduced plasma glucose, insulin, nonesterified fatty acid and triacylglycerol and increased adiponectin levels in ob/ob mice. In contrast, plasma lipid profiles and glucose homeostasis deteriorated and promoted atherosclerosis following the CLA-enriched beef diet in ApoE(-/-) mice. Hepatic transcriptomic profiling revealed divergent effects of CLA-enriched beef on insulin signaling and lipogenic pathways, which were adversely affected in ApoE(-/-) mice. This study demonstrated clear divergence in the effects of CLA. CLA-enriched beef improved metabolic flexibility in ob/ob mice, resulting in enhanced insulin sensitivity. However, CLA-enriched diet increased expression of lipogenic genes, resulting in inefficient fatty acid storage which increases lipotoxicity in peripheral organs, and led to profound metabolic dysfunction in ApoE(-/-) mice. While CLA may have potential health effects, in some circumstances, caution must be exercised in presenting this bioactive lipid as a potential functional food for the treatment of metabolic disease. Topics: Adipose Tissue; Animals; Apolipoproteins E; Atherosclerosis; Cattle; Diet; Disease Models, Animal; Fatty Acids, Unsaturated; Gene Expression Profiling; Gene Expression Regulation; Glucose; Insulin; Leptin; Linoleic Acids, Conjugated; Lipids; Liver; Meat Products; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Obese | 2013 |
Conjugated linoleic acid isomers inhibit platelet-derived growth factor-induced NF-kappaB transactivation and collagen formation in human vascular smooth muscle cells.
Atherosclerosis is characterized by extensive thickening of the arterial intima partially resulting from deposition of collagen by vascular smooth muscle cells (SMCs). Polyunsaturated fatty acids stimulate collagen formation through NF-kappaB activation.. The present study aimed to explore the effect of conjugated linoleic acids (CLAs) which are known to inhibit NF-kappaB activation on collagen formation by SMCs.. Vascular SMCs were cultured with 50 micromol/l of CLA isomers (c9t11-CLA, t10c12-CLA) or linoleic acid (LA) and analysed for collagen formation and NF-kappaB p50 transactivation.. Treatment with CLA isomers but not LA significantly reduced PDGF-stimulated [(3)H] proline incorporation into cell layer protein of SMCs without altering cell proliferation. Simultaneous treatment with the PPARgamma inhibitor T0070907 abrogated this effect. Treatment of SMCs with c9t11-CLA and t10c12-CLA significantly reduced PDGF-induced NF-kappaB p50 activation.. CLA isomers inhibit PDGF-stimulated collagen production by vascular SMCs, which is considered to be a hallmark of atherosclerosis, in a PPARgamma-dependent manner. Whether inhibition of the NF-kappaB-pathway is of significance for the reduction of collagen formation by CLA isomers needs further investigation. Topics: Analysis of Variance; Atherosclerosis; Benzamides; Cell Division; Cell Survival; Cells, Cultured; Collagen; Humans; Isomerism; Linoleic Acid; Linoleic Acids, Conjugated; Muscle, Smooth, Vascular; NF-kappa B; Platelet-Derived Growth Factor; PPAR gamma; Pyridines | 2008 |
Divergent mechanisms of cis9, trans11-and trans10, cis12-conjugated linoleic acid affecting insulin resistance and inflammation in apolipoprotein E knockout mice: a proteomics approach.
Conjugated linoleic acids (CLA) affect atherogenesis, but mechanisms are not well understood. We explored how two isomers of CLA, cis9, trans11-CLA and trans10, cis12-CLA, affected lipid and glucose metabolism, as well as hepatic protein expression, in apolipoprotein E knockout mice. After 12 wk of intervention, plasma triglyceride, NEFA, and glucose concentrations were significantly higher in the trans10, cis12-CLA group, whereas plasma triglyceride, NEFA, glucose, and insulin concentrations were significantly lower in the cis9, trans11-CLA group, compared with control mice consuming linoleic acid. Proteomics identified significant up- or down-regulation of 113 liver cytosolic proteins by either CLA isomer. Principal component analysis revealed that the treatment effect of cis9, trans11-CLA was mainly explained by the up-regulation of different posttranslational forms of heat shock protein 70 kD. In contrast, the treatment effect of trans10, cis12-CLA was mainly explained by up-regulation of key enzymes in the gluconeogenic, beta-oxidation, and ketogenesic pathways. Correlation analysis again emphasized the divergent effects of both CLA isomers on different pathways, but also revealed a linkage between insulin resistance and increased levels of hepatic serotransferrin. Thus, our systems biology approach provided novel insights into the mechanisms by which individual CLA isomers differentially affect pathways related to atherogenesis, such as insulin resistance and inflammation. Topics: Animal Feed; Animals; Apolipoproteins E; Atherosclerosis; Blood Glucose; Blotting, Western; Body Composition; Body Weight; Cytosol; Diet; Fatty Acids; Genetic Linkage; Glucose; HSP70 Heat-Shock Proteins; Inflammation; Insulin; Insulin Resistance; Linoleic Acid; Linoleic Acids, Conjugated; Liver; Male; Mice; Mice, Knockout; Oxygen; Perfusion; Principal Component Analysis; Proteomics; Systems Biology; Triglycerides | 2005 |