rtki cpd has been researched along with Body Weight in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (33.33) | 29.6817 |
2010's | 2 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Hu, J; Li, X; Liang, D; Liang, G; Lin, F; Qian, Y; Wang, J; Xu, Z; Zeng, C; Zhong, P | 1 |
Akhtar, S; Al-Farsi, O; Benter, IF; Chandrasekhar, B; Dhaunsi, GS; Yousif, MH | 1 |
Akhtar, S; Benter, IF; Yousif, MH | 1 |
3 other study(ies) available for rtki cpd and Body Weight
Article | Year |
---|---|
EGFR inhibition protects cardiac damage and remodeling through attenuating oxidative stress in STZ-induced diabetic mouse model.
Topics: Animals; Apoptosis; Blood Glucose; Body Weight; Cell Line; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Disease Models, Animal; ErbB Receptors; Fibrosis; Male; Mice; Myocardium; Oxidative Stress; Proto-Oncogene Proteins c-akt; Quinazolines; Reactive Oxygen Species; Signal Transduction; Tyrphostins; Ventricular Remodeling | 2015 |
Angiotensin-(1-7) inhibits epidermal growth factor receptor transactivation via a Mas receptor-dependent pathway.
Topics: Angiotensin I; Angiotensin II; Animals; Body Weight; Diabetes Mellitus; ErbB Receptors; Glucose; Hyperglycemia; Male; MAP Kinase Signaling System; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; p38 Mitogen-Activated Protein Kinases; Peptide Fragments; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Quinazolines; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Signal Transduction; src-Family Kinases; Transcriptional Activation; Tyrphostins | 2012 |
The role of tyrosine kinase-mediated pathways in diabetes-induced alterations in responsiveness of rat carotid artery.
Topics: Animals; Benzothiazoles; Body Weight; Carotid Arteries; Diabetes Mellitus, Experimental; Enzyme Inhibitors; ErbB Receptors; Female; Genes, erbB-1; Genes, erbB-2; Genistein; In Vitro Techniques; Protein-Tyrosine Kinases; Quinazolines; Rats; Rats, Wistar; Signal Transduction; Tyrphostins; Vasoconstriction; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents | 2005 |