rta-408 has been researched along with Brain-Injuries* in 2 studies
2 other study(ies) available for rta-408 and Brain-Injuries
Article | Year |
---|---|
The Novel Nrf2 Activator Omaveloxolone Regulates Microglia Phenotype and Ameliorates Secondary Brain Injury after Intracerebral Hemorrhage in Mice.
The polarization of microglia is recognized as a crucial factor in reducing neuroinflammation and promoting hematoma clearance after intracerebral hemorrhage (ICH). Previous studies have revealed that redox components participate in the regulation of microglial polarization. Recently, the novel Nrf2 activator omaveloxolone (Omav) has been validated to improve neurological function in patients with neurodegenerative disorders by regulating antioxidant responses. In this study, we examined the efficacy of Omav in ICH. Omav significantly promoted Nrf2 nuclear accumulation and the expression of HO-1 and NQO1 in BV2 cells. In addition, both Topics: Animals; Brain Injuries; Cerebral Hemorrhage; Humans; Mice; Microglia; NF-E2-Related Factor 2; Phenotype; Triterpenes | 2022 |
Mechanisms and therapeutic implications of RTA 408, an activator of Nrf2, in subarachnoid hemorrhage-induced delayed cerebral vasospasm and secondary brain injury.
More and more evidence suggests oxidative stress and inflammation contribute importantly to subarachnoid hemorrhage (SAH)-induced cerebral vasospasm and secondary brain injury. Recent evidence indicates Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) increases the expression of antioxidant genes and decreases the expression of pro-inflammatory genes. This study examines the effects of an activator of Nfr2, RTA 408, on SAH-induced cerebral vasospasm and possible mechanism underlying its effect in a two-hemorrhage rodent model of SAH.. We randomly assigned 60 Sprague-Dawley male rats (350 to 420g) to five groups twelve rats each: one control group (no SAH), one untreated SAH only group and three RTA-408 treatment groups (SAH+ RTA 408 0.5 mg/kg/day, SAH+RTA 408 1 mg/kg/day and a SAH+RTA 408 1.5 mg/kg/day). The treatment groups were administered RTA 408 by intraperitoneal injection thirty min following first induction of SAH for seven days starting with first hemorrhage. Cerebral vasospasm was determined by averaging the cross-sectional areas of basilar artery 7 days after first SAH. Expressions of Nrf2, NF-κB and iNOS in basilar artery and expressions of Nrf2, HO-1, NQO1 and Cleaved caspase-3 were evaluated. Tissue TNF-alpha was assessed by ELISA using the protein sampled from the dentate gyrus, cerebral cortex, and hippocampus.. Prior to perfusion fixation, there were no significant physiological differences among the control and treated groups. RTA 408 treatment attenuated the morphological changes caused by cerebral vasospasm. It mitigated SAH-induced suppression of Nrf2 and increased expression of NF-κB and iNOS in the basilar artery. In dentate gyrus, it reversed SAH-decreases in Nrf2, HO-1, NQO-1 and cleaved caspase-3 and RTA 408 1.5 mg/kg/day reversed SAH increases in TNF-alpha.. It was concluded that RTA 408 reversal vasospasm was achieved via increases in Nrf2 and decreases in NF-κB and iNOS. It exerted a neuron-protection effect by decreasing the apoptosis-related protein cleaved caspase-3 and decreasing the information cytokine TNF-alpha expression, which it achieved by increasing HO-1 and NQO-1 protein found downstream from Nrf2 and Nrf2. We believe that RTA 408 can potentially be used to manage of cerebral vasospasm and secondary brain injury following SAH. Topics: Animals; Anti-Inflammatory Agents; Brain Injuries; Male; NF-E2-Related Factor 2; Rats, Sprague-Dawley; Subarachnoid Hemorrhage; Triterpenes; Vasospasm, Intracranial | 2020 |