rottlerin has been researched along with Seizures* in 2 studies
2 other study(ies) available for rottlerin and Seizures
Article | Year |
---|---|
Enhanced neurogenesis is involved in neuroprotection provided by rottlerin against trimethyltin-induced delayed apoptotic neuronal damage.
We here investigated the effect of late- and post-ictal treatment with rottlerin, a polyphenol compound isolated from Mallotus philippinensis, on delayed apoptotic neuronal death induced by trimethyltin (TMT) in mice.. Male C57BL/6N mice received a single injection of TMT (2.4 mg/kg, i.p.), and mice were treated with rottlerin after a peak time (i.e., 2 d post-TMT) of convulsive behaviors and apoptotic cell death (5.0 mg/kg, i.p. at 3 and 4 d after TMT injection). Object location test and tail suspension test were performed at 5 d after TMT injection. In addition, changes in the expression of apoptotic and neurogenic markers in the dentate gyrus were examined.. Late- and post-ictal treatment with rottlerin suppressed delayed neuronal apoptosis in the dentate gyrus, and attenuated memory impairments (as evaluated by object location test) and depression-like behaviors (as evaluated by tail suspension test) at 5 days after TMT injection in mice. In addition, rottlerin enhanced the expression of Sox2 and DCX, and facilitated p-ERK expression in BrdU-incorporated cells in the dentate gyrus of TMT-treated mice. Rottlerin also increased p-Akt expression, and attenuated the increase in the ratio of pro-apoptotic factors/anti-apoptotic factors, and consequent cytosolic cytochrome c release and caspase-3 cleavage. Rottlerin-mediated action was significantly reversed by SL327, an ERK inhibitor.. Our results suggest that late- and post-ictal treatment with rottlerin attenuates TMT-induced delayed neuronal apoptosis in the dentate gyrus of mice via promotion of neurogenesis and inhibition of an on-going apoptotic process through up-regulation of p-ERK. Topics: Acetophenones; Animals; Apoptosis; Behavior, Animal; Benzopyrans; Dentate Gyrus; Doublecortin Protein; Extracellular Signal-Regulated MAP Kinases; Male; Memory Disorders; Mice; Mice, Inbred C57BL; Neurogenesis; Neurons; Neuroprotective Agents; Seizures; Time Factors; Trimethyltin Compounds; Up-Regulation | 2020 |
Protein kinase Cδ mediates trimethyltin-induced neurotoxicity in mice in vivo via inhibition of glutathione defense mechanism.
We investigated whether protein kinase C (PKC) is involved in trimethyltin (TMT)-induced neurotoxicity. TMT treatment (2.8 mg/kg, i.p.) significantly increased PKCδ expression out of PKC isozymes (i.e., α, βI, βII, δ, and ς) in the hippocampus of wild-type (WT) mice. Consistently, treatment with TMT resulted in significant increases in cleaved PKCδ expression. Genetic or pharmacological inhibition (PKCδ knockout or rottlerin) was less susceptible to TMT-induced seizures than WT mice. TMT treatment increased glutathione oxidation, lipid peroxidation, protein oxidation, and levels of reactive oxygen species. These effects were more pronounced in the WT mice than in PKCδ knockout mice. In addition, the ability of TMT to induce nuclear translocation of Nrf2, Nrf2 DNA-binding activity, and upregulation of γ-glutamylcysteine ligase was significantly increased in the PKCδ knockout mice and rottlerin (10 or 20 mg/kg, p.o. × 6)-treated WT mice. Furthermore, neuronal degeneration (as shown by nuclear chromatin clumping and TUNEL staining) in WT mice was most pronounced 2 days after TMT. At the same time, TMT-induced inhibition of phosphoinositol 3-kinase (PI3K)/Akt signaling was evident, thereby decreasing phospho-Bad, expression of Bcl-xL and Bcl-2, and the interaction between phospho-Bad and 14-3-3 protein, and increasing Bax expression and caspase-3 cleavage were observed. Rottlerin or PKCδ knockout significantly protected these changes in anti- and pro-apoptotic factors. Importantly, treatment of the PI3K inhibitor LY294002 (0.8 or 1.6 µg, i.c.v.) 4 h before TMT counteracted protective effects (i.e., Nrf-2-dependent glutathione induction and pro-survival phenomenon) of rottlerin. Therefore, our results suggest that down-regulation of PKCδ and up-regulations of Nrf2-dependent glutathione defense mechanism and PI3K/Akt signaling are critical for attenuating TMT neurotoxicity. Topics: Acetophenones; Animals; Benzopyrans; Dose-Response Relationship, Drug; Glutathione; Hippocampus; Mice, Inbred C57BL; Mice, Knockout; Neurotoxicity Syndromes; Phosphatidylinositol 3-Kinases; Protein Kinase C-delta; Protein Kinase Inhibitors; Seizures; Trimethyltin Compounds | 2016 |