rottlerin has been researched along with Parkinson-Disease* in 2 studies
2 other study(ies) available for rottlerin and Parkinson-Disease
Article | Year |
---|---|
Neuroprotective effect of protein kinase C delta inhibitor rottlerin in cell culture and animal models of Parkinson's disease.
Recent studies from our laboratory demonstrated that the protein kinase C (PKC) delta isoform is an oxidative stress-sensitive kinase and a key mediator of apoptotic cell death in Parkinson's Disease (PD) models (Eur J Neurosci 18:1387-1401, 2003; Mol Cell Neurosci 25:406-421, 2004). We showed that native PKC delta is proteolytically activated by caspase-3 and that suppression of PKC delta by dominant-negative mutant or small interfering RNA against the kinase can effectively block apoptotic cell death in cellular models of PD. In an attempt to translate the mechanistic studies to a neuroprotective strategy targeting PKC delta, we systematically characterized the neuroprotective effect of a PKC delta inhibitor, rottlerin, in 1-methyl-4-phenylpyridinium (MPP(+))-treated primary mesencephalic neuronal cultures as well as in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of PD. Rottlerin treatment in primary mesencephalic cultures significantly attenuated MPP(+)-induced tyrosine hydroxylase (TH)-positive neuronal cell and neurite loss. Administration of rottlerin, either intraperitoneally or orally, to C57 black mice showed significant protection against MPTP-induced locomotor deficits and striatal depletion of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid. Notably, rottlerin post-treatment was effective even when MPTP-induced depletion of dopamine and its metabolites was greater than 60%, demonstrating its neurorescue potential. Furthermore, the dose of rottlerin used in neuroprotective studies effectively attenuated the MPTP-induced PKC delta kinase activity. Importantly, stereological analysis of nigral neurons revealed rottlerin treatment significantly protected against MPTP-induced TH-positive neuronal loss in the substantia nigra compacta. Collectively, our findings demonstrate the neuroprotective effect of rottlerin in both cell culture and preclinical animal models of PD, and they suggest that pharmacological modulation of PKC delta may offer a novel therapeutic strategy for treatment of PD. Topics: Acetophenones; Animals; Benzopyrans; Cells, Cultured; Disease Models, Animal; Drug Evaluation, Preclinical; Mesencephalon; Mice; Neurons; Neuroprotective Agents; Parkinson Disease; Protein Kinase C-delta; Substantia Nigra | 2007 |
6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta.
6-Hydroxydopamine is a neurotoxin commonly used to lesion dopaminergic pathways and generate experimental models for Parkinson disease, however, the cellular mechanism of 6-hydroxydopamine-induced neurodegeneration is not well defined. In this study we have explored how 6-hydroxydopamine neurotoxicity is initiated. We have also investigated downstream signaling pathways activated in response to 6-hydroxydopamine, using a neuronal-like, catecholaminergic cell line (PC12 cells) as an in vitro model system. We have shown that 6-hydroxydopamine neurotoxicity is initiated via extracellular auto-oxidation and the induction of oxidative stress from the oxidative products generated. Neurotoxicity is completely attenuated by preincubation with catalase, suggesting that hydrogen peroxide, at least in part, evokes neuronal cell death in this model. 6-Hydroxydopamine does not initiate toxicity by dopamine transporter-mediated uptake into PC12 cells, because both GBR-12909 and nisoxetine (inhibitors of dopamine and noradrenaline transporters, respectively) failed to reduce toxicity. 6-Hydroxydopamine has previously been shown to induce both apoptotic and necrotic cell-death mechanisms. In this study oxidative stress initiated by 6-hydroxydopamine caused mitochondrial dysfunction, activation of caspases 3/7, nuclear fragmentation, and apoptosis. We have shown that, in this model, proteolytic activation of the proapoptotic protein kinase Cdelta (PKCdelta) is a key mediator of 6-hydroxydopamine-induced cell death. 6-Hydroxydopamine induces caspase 3-dependent cleavage of full-length PKCdelta (79 kDa) to yield a catalytic fragment (41 kDa). Inhibition of PKCdelta (with rottlerin or via RNA interference-mediated gene suppression) ameliorates the neurotoxicity evoked by 6-hydroxydopamine, implicating this kinase in 6-hydroxydopamine-induced neurotoxicity and Parkinsonian neurodegeneration. Topics: Acetophenones; Animals; Apoptosis; Benzopyrans; Caspase 3; Caspase 7; Caspases; Enzyme Activation; Enzyme Inhibitors; Mitochondria; Oxidation-Reduction; Oxidative Stress; Oxidopamine; Parkinson Disease; PC12 Cells; Peptide Fragments; Protein Kinase C-delta; Rats; RNA Interference; Signal Transduction; Sympatholytics | 2006 |