rottlerin has been researched along with Osteoarthritis* in 2 studies
2 other study(ies) available for rottlerin and Osteoarthritis
Article | Year |
---|---|
The CCL2/CCR2 axis enhances vascular cell adhesion molecule-1 expression in human synovial fibroblasts.
Chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1), belongs to the CC chemokine family that is associated with the disease status and outcomes of osteoarthritis (OA). Here, we investigated the intracellular signaling pathways involved in CCL2-induced vascular cell adhesion molecule-1 (VCAM-1) expression in human OA synovial fibroblasts (OASFs).. Stimulation of OASFs with CCL2 induced VCAM-1 expression. CCL2-mediated VCAM-1 expression was attenuated by CCR2 inhibitor (RS102895), PKCδ inhibitor (rottlerin), p38MAPK inhibitor (SB203580), and AP-1 inhibitors (curcumin and tanshinone IIA). Stimulation of cells with CCL2 increased PKCδ and p38MAPK activation. Treatment of OASFs with CCL2 also increased the c-Jun phosphorylation and c-Jun binding to the AP-1 element on the VCAM-1 promoter. Moreover, CCL2-mediated CCR2, PKCδ, p38MAPK, and AP-1 pathway promoted the adhesion of monocytes to the OASFs monolayer.. Our results suggest that CCL2 increases VCAM-1 expression in human OASFs via the CCR2, PKCδ, p38MAPK, c-Jun, and AP-1 signaling pathway. The CCL2-induced VCAM-1 expression promoted monocytes adhesion to human OASFs. Topics: Acetophenones; Benzopyrans; Cell Adhesion; Chemokine CCL2; Fibroblasts; Gene Expression Regulation; Humans; Imidazoles; JNK Mitogen-Activated Protein Kinases; Mitogen-Activated Protein Kinase 14; Osteoarthritis; Pyridines; Receptors, CCR2; Signal Transduction; Synovial Fluid; Transcription Factor AP-1; Vascular Cell Adhesion Molecule-1 | 2012 |
The CCL5/CCR5 axis promotes interleukin-6 production in human synovial fibroblasts.
CCL5 (RANTES) was originally identified as a product of activated T cells and plays a crucial role in the inflammatory response. This study was undertaken to investigate the intracellular signaling pathways involved in CCL5-induced interleukin-6 (IL-6) production in human synovial fibroblasts.. CCL5-mediated IL-6 expression was assessed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The mechanisms of action of CCL5 in different signaling pathways were studied using Western blotting. Knockdown of CCR5 and protein kinase Cδ (PKCδ) protein was achieved by transfection of small interfering RNA (siRNA). Chromatin immunoprecipitation assays were used to study in vivo binding of c-Jun to the IL-6 promoter. Transient transfection was used to examine IL-6 and activator protein 1 (AP-1) activity.. Osteoarthritis synovial fibroblasts (OASFs) showed significant expression of CCL5 and CCR5, and expression was higher than that in normal synovial fibroblasts. Stimulation of OASFs with CCL5 induced concentration- and time-dependent increases in IL-6 production. CCL5-mediated IL-6 production was attenuated by CCR5 monoclonal antibody, CCR5 inhibitor (Met-RANTES), and CCR5 siRNA. Pretreatment with a PKCδ inhibitor (rottlerin), a c-Src inhibitor (PP2), or an AP-1 inhibitor (tanshinone IIA) also blocked the potentiating action of CCL5. Treatment of OASFs with CCL5 increased the accumulation of phosphorylated c-Jun in the nucleus, AP-1 luciferase activity, and c-Jun binding to the AP-1 element on the IL-6 promoter. CCL5-mediated AP-1 luciferase activity and c-Jun binding to the AP-1 element were inhibited by Met-RANTES, rottlerin, and PP2.. The present results suggest that the interaction between CCL5 and CCR5 increases IL-6 production in human synovial fibroblasts via the PKCδ/c-Src/c-Jun and AP-1 signaling pathways. Topics: Abietanes; Acetophenones; Benzopyrans; Cells, Cultured; Chemokine CCL5; CSK Tyrosine-Protein Kinase; Fibroblasts; Humans; Interleukin-6; Osteoarthritis; Phenanthrenes; Protein Kinase C-delta; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-jun; Pyrimidines; Receptors, CCR5; Signal Transduction; src-Family Kinases; Synovial Membrane; Transcription Factor AP-1 | 2010 |