rottlerin has been researched along with Colonic-Neoplasms* in 9 studies
9 other study(ies) available for rottlerin and Colonic-Neoplasms
Article | Year |
---|---|
Combined incubation of colon carcinoma cells with phorbol ester and mitochondrial uncoupling agents results in synergic elevated reactive oxygen species levels and increased γ-glutamyltransferase expression.
The NADPH oxidase (NOX) is a significant determinant for the expression and activity of γ-glutamyltransferase (GGT), which is frequently upregulated after increased levels of reactive oxygen species (ROS) and oxidative stress. Earlier studies on human colon carcinoma HT-29 cells have shown that treatment with phorbol 12-myristate 13-acetate (PMA) activates NOX thus increasing the intracellular level of ROS and upregulating GGT. Another important source of cellular ROS is the mitochondria, and treatment with the mitochondria uncoupler carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP) results in increased ROS levels. The present study shows that when HT-29 cells were simultaneously treated with both agents, a significant and synergic increase in intracellular ROS was detected. NOX activity contributed at least 50 % of this increase as inhibiting NOX activity with apocynin or downregulating the NOX activity using siRNA against p22 phox reduced the synergic ROS production. The combined FCCP and PMA treatment also provoked highly increased GGT mRNA levels after 24 h whereas only minor and delayed increases in GGT protein and enzyme activity levels were detected. The results strongly indicate that ROS production by both mitochondria and NOX is involved in the regulation of GGT expression in colon carcinoma cells. Topics: Acetophenones; Benzopyrans; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cell Line, Tumor; Colonic Neoplasms; Drug Combinations; Drug Synergism; Enzyme Inhibitors; gamma-Glutamyltransferase; HT29 Cells; Humans; Mitochondria; NADPH Oxidases; Oxidation-Reduction; Oxidative Stress; Reactive Oxygen Species; RNA Interference; RNA, Messenger; RNA, Small Interfering; Tetradecanoylphorbol Acetate; Uncoupling Agents | 2014 |
Rottlerin induces apoptosis of HT29 colon carcinoma cells through NAG-1 upregulation via an ERK and p38 MAPK-dependent and PKC δ-independent mechanism.
Rottlerin, a selective inhibitor of novel isoforms of protein kinase C δ (PKC δ), has been shown to exert multiple effects on cancer cells, including inhibition of cell proliferation and migration. However, the molecular mechanisms responsible for these effects are not fully understood. We found that rottlerin dramatically induced non-steroidal anti-inflammatory drug activated gene-1 (NAG-1) expression in both p53 wild-type and p53-null cancer cell lines, suggesting that NAG-1 upregulation is a common response to rottlerin that occurs independently of p53 in multiple cell lines. Although rottlerin is known to inhibit PKC δ, PKC δ siRNA and overexpression of dominant-negative (DN)-PKC δ did not affect rottlerin-mediated induction of NAG-1. These results suggest that rottlerin induces NAG-1 upregulation via a PKC δ-independent pathway. We also observed that CHOP protein levels were significantly increased by rottlerin, but CHOP siRNA did not affect rottlerin-induced NAG-1 expression. In addition, we demonstrated the involvement of the mitogen-activated protein kinase (MAP kinase) signal transduction pathway in rottlerin-induced NAG-1 expression. Inhibitors of MEK (PD98059) and p38 MAP kinase (SB203580) prevented rottlerin-induced NAG-1 expression. Furthermore, we found that down-regulation of NAG-1 attenuated rottlerin-induced apoptosis. Collectively, the results of this study demonstrate, for the first time, that upregulation of NAG-1 contributes to rottlerin-induced apoptosis in cancer cells. Topics: Acetophenones; Apoptosis; Benzopyrans; Cell Line, Tumor; Colonic Neoplasms; Enzyme Inhibitors; Gene Deletion; Growth Differentiation Factor 15; HT29 Cells; Humans; p38 Mitogen-Activated Protein Kinases; Protein Kinase C-delta; RNA, Small Interfering; Transcription Factor CHOP; Tumor Suppressor Protein p53; Up-Regulation | 2012 |
Rottlerin induces heme oxygenase-1 (HO-1) up-regulation through reactive oxygen species (ROS) dependent and PKC delta-independent pathway in human colon cancer HT29 cells.
Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by its substrate heme and diverse stimuli. The induction of HO-1 gene expression is one of the important events in cellular response to pro-oxidative and pro-inflammatory insults. In this study, the effect of rottlerin, a putative PKC delta inhibitor, on HO-1 expression in HT29 human colon cancer cells was investigated. Rottlerin-induced HO-1 at both protein and mRNA levels in a dose- and time-dependent manner. Rottlerin-mediated HO-1 induction was abrogated in the presence of N-acetylcysteine (NAC) or glutathione (GSH). Rottlerin induced nuclear translocation of NF-E2-related factor 2 (Nrf2) and increased antioxidant response element (ARE)-driven transcriptional activity. Additionally, rottlerin activated p38 mitogen-activated protein kinase (MAPK) and ERK. The pharmacological inhibition of ERK and p38 MAPK inhibited rottlerin-induced HO-1 up-regulation. However, suppression of protein kinase C delta (PKC delta) expression by siRNA or overexpression of WT-PKC delta did not abrogate the rottlerin-mediated induction of HO-1. These results suggest that rottlerin induces up-regulation of HO-1 via PKC delta-independent pathway. Taken together, the present study identified rottlerin as a novel inducer of HO-1 expression and identified the mechanisms involved in this process. Topics: Acetophenones; Active Transport, Cell Nucleus; Animals; Benzopyrans; Colonic Neoplasms; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Heme Oxygenase-1; HT29 Cells; Humans; Luciferases; NF-E2-Related Factor 2; p38 Mitogen-Activated Protein Kinases; Protein Kinase C-delta; Protein Kinase Inhibitors; Reactive Oxygen Species; Signal Transduction; Up-Regulation | 2010 |
Rottlerin induces pro-apoptotic endoplasmic reticulum stress through the protein kinase C-delta-independent pathway in human colon cancer cells.
Rottlerin, a compound reported to be a PKC delta-selective inhibitor, has been shown to induce growth arrest or apoptosis of human cancer cell lines. In our study, rottlerin dose-dependently induced apoptotic cell death in colon carcinoma cells. Treatment of HT29 human colon carcinoma cells with rottlerin was found to induce a number of signature ER stress markers; phosphorylation of eukaryotic initiation factor-2alpha (eIF-2alpha), ER stress-specific XBP1 splicing, and up-regulation of glucose-regulated protein (GRP)-78 and CCAAT/enhancer-binding protein-homologous protein (CHOP). However, suppression of PKC delta expression by siRNA or overexpression of WT-PKC delta and DN-PKC delta did not abrogate the rottlerin-mediated induction of CHOP. These results suggest that rottlerin induces up-regulation of CHOP via PKC delta-independent pathway. Furthermore, down-regulation of CHOP expression using CHOP siRNA attenuated rottlerin-induced apoptosis. Taken together, the present study thus provides strong evidence to support an important role of ER stress response in mediating the rottlerin-induced apoptosis. Topics: Acetophenones; Alternative Splicing; Apoptosis; Benzopyrans; Cell Line, Tumor; Colonic Neoplasms; Down-Regulation; Endoplasmic Reticulum; Enzyme Inhibitors; Humans; Models, Biological; Phosphorylation; Protein Denaturation; Protein Kinase C-delta; RNA, Small Interfering; Transcription Factor CHOP | 2008 |
Inhibition of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway decreases DNA methylation in colon cancer cells.
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK-MAPK) pathway is a critical intermediary for cell proliferation, differentiation, and survival. In the human colon cancer cell line SW1116, treatment with the DNA methyltransferase 1 (DNMT1) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) or the ERK-MAPK inhibitors PD98059 or rottlerin, or transient transfection with the MAP/ERK kinase (MEK)1/2 small interfering RNA down-regulates DNMT1 and proliferating cell nuclear antigen levels. In this report, we found that drug treatment or small interfering RNA transfection of SW1116 cells induced promoter demethylation of the p16(INK4A) and p21(WAF1) genes, which up-regulated their mRNA and protein expression levels. Flow cytometry revealed that rottlerin treatment induced cell cycle arrest at phase G(1) (p < 0.05). Thus, the ERK-MAPK inhibitor treatment or siRNA-mediated knockdown of ERK-MAPK decreases DNA methylation via down-regulating DNMT1 expression and other unknown mediator(s) in SW1116 colon cancer cells. Topics: Acetophenones; Base Sequence; Benzopyrans; Cell Line, Tumor; Colonic Neoplasms; Cyclin-Dependent Kinase Inhibitor p21; DNA (Cytosine-5-)-Methyltransferase 1; DNA (Cytosine-5-)-Methyltransferases; DNA Methylation; DNA Primers; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Flavonoids; Gene Expression Regulation, Neoplastic; Humans; MAP Kinase Signaling System; Molecular Sequence Data | 2007 |
[The effect of PKC-delta inhibitor Rottlerin on human colon cancer cell line SW1116 and its mechanism].
To evaluate the effect of PKC-delta inhibitor Rottlerin on human colon cancer cells and its mechanism.. Human colon cancer cell line SW1116 cells were treated with Rottlerin. The transcriptional level of DNA methyltransferase (Dnmt)1, Dnmt3a and Dnmt3b was detected by real-time RT-PCR. Cell cycle distribution was evaluated by flow cytometry (FCM). In addition, cellular morphological changes were examined by light microscopy.. PKC-delta inhibitor decreased the expression of Dnmt1, Dnmt3a mRNA, up-regulated APC, p21(WAF1) and p16(INK4A) mRNA. Demonstarted by flow cytometry, Rottlerin increased the percentage of cell cycle G0/G1 phase cell numbers (P = 0.02) and decreased the percentage of cell cycle G2/M phase cell numbers (P = 0.01). Remarkable changes of cellular morphology were observed under light microscope: The volume and cytoplasm of cells treated with Rottlerin were increased. The cell contour was not very clear, and mitotic figures were less frequently seen.. PKC-delta inhibitor Rottlerin inhibites cell division and proliferation of the colon cancer SW1116 cells through regulating DNA methylation and blocking the signaling pathway of mitogen-activated protein kinase (MAPK). Topics: Acetophenones; Adenomatous Polyposis Coli Protein; Benzopyrans; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Cyclin-Dependent Kinase Inhibitor p16; Cyclin-Dependent Kinase Inhibitor p21; DNA (Cytosine-5-)-Methyltransferase 1; DNA (Cytosine-5-)-Methyltransferases; DNA Methyltransferase 3A; Flow Cytometry; Gene Expression Regulation, Neoplastic; Humans; Protein Kinase C-delta; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction | 2006 |
Protein kinase C delta is not activated by caspase-3 and its inhibition is sufficient to induce apoptosis in the colon cancer line, COLO 205.
Activation of protein kinase C delta (PKCdelta) is believed to be pro-apoptotic. PKCdelta is reported to be reduced in colon cancers. Using a colon cancer cell line, COLO 205, we have examined the roles of PKCdelta in apoptosis and of caspase-3 in the activation and inhibition of PKCdelta. PKCdelta activation with bistratene A and its inhibition with rottlerin induced apoptosis. Effects of PKC activators and inhibitors were additive, suggesting that PKCdelta down-regulation was responsible for the effects on apoptosis. Different apoptotic pathways induced PKCdelta cleavage, but the fragment produced was inactive in kinase assays. Caspase-3 inhibition did not block DNA fragmentation or PKCdelta proteolysis despite blocking intracellular caspase-3 activity. Calpain inhibition with calpeptin did not prevent TPA-induced PKCdelta cleavage. We conclude that in colonocytes, inhibition of PKCdelta is sufficient to lead to caspase-3-independent apoptosis. Caspase-3 does not cleave PKCdelta to an active form, nor does caspase-3 inhibition block apoptosis. Topics: Acetamides; Acetophenones; Alkaloids; Amino Acid Chloromethyl Ketones; Antineoplastic Agents; Apoptosis; Benzophenanthridines; Benzopyrans; Calpain; Caspase 3; Caspase Inhibitors; Caspases; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Cysteine Proteinase Inhibitors; Dipeptides; DNA Fragmentation; Enzyme Activation; Enzyme Inhibitors; Flow Cytometry; Histones; Humans; Indomethacin; Kinetics; Phenanthridines; Phosphorylation; Protein Kinase C; Protein Kinase C-delta; Pyrans; Spiro Compounds; Tetradecanoylphorbol Acetate; Tumor Necrosis Factor-alpha | 2005 |
Rottlerin sensitizes colon carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via uncoupling of the mitochondria independent of protein kinase C.
Signaling pathways involved in survival responses may attenuate the apoptotic response to the cytotoxic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in human colon carcinomas. In six lines examined, three were sensitive (GC(3)/c1, VRC(5)/c1, HCT116), HT29 demonstrated intermediate sensitivity, and RKO and HCT8 were resistant to TRAIL-induced apoptosis. Calphostin c [an inhibitor of classic and novel isoforms of protein kinase C (PKC)] sensitized five of six cell lines to TRAIL, whereas Go6976, (inhibitor of classic PKC isoforms), did not influence TRAIL sensitivity. Rottlerin, an inhibitor of novel isoforms of PKC, specifically PKC delta, sensitized five of six cell lines to TRAIL-induced apoptosis, suggesting that PKC delta may be involved in the mechanism of TRAIL resistance. Transfection of HCT116 with a proapoptotic cleaved fragment of PKC delta or an antiapoptotic full-length PKC delta did not influence the sensitivity of HCT116 to TRAIL. Furthermore, the incubation of HCT116 or RKO with phorbol myristate acetate for 16 h, which down-regulated the expression of novel PKC isoforms, also did not influence sensitivity to TRAIL either in the absence or presence of rottlerin. However, after 15-min incubation with rottlerin, mitochondrial membrane potential (Delta psi m) was dramatically reduced in RKO cells, and, in cells subsequently treated with TRAIL, rapid apoptosis was evident within 8 h. Calphostin c, but not Go6976, also caused a decrease in Delta psi m. In RKO, rottlerin induced the release of cytochrome c, HtrA2/Omi, Smac/DIABLO, and AIF from the mitochondria, potentiated in combination with TRAIL, with concomitant caspase activation and down-regulation of XIAP. In HT29, the release of proapoptotic factors was demonstrated only when rottlerin and TRAIL were combined, and Bcl-2 overexpression inhibited this release and the induction of apoptosis. TRAIL-induced apoptosis was not influenced by rottlerin or Bcl-2 overexpression in type I (GC(3)/c1) cells. Data suggest that rottlerin affects mitochondrial function independent of PKC delta, thereby sensitizing cells to TRAIL, and that mitochondria constitute an important target in overcoming inherent resistance to TRAIL in colon carcinomas. Topics: Acetophenones; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Benzopyrans; Carbazoles; Caspases; Colonic Neoplasms; Drug Synergism; Enzyme Inhibitors; Humans; Indoles; Membrane Glycoproteins; Mitochondria; Naphthalenes; Protein Kinase C; Protein Kinase C-delta; Protein Kinase C-epsilon; Proto-Oncogene Proteins c-bcl-2; TNF-Related Apoptosis-Inducing Ligand; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha | 2003 |
High PKC alpha and low E-cadherin expression contribute to high migratory activity of colon carcinoma cells.
The protein kinase C (PKC) is a family of serine/threonine kinases that are key regulatory enzymes involved in growth, differentiation, cytoskeletal reorganization, tumor promotion, and migration. We investigated the functional involvement of PKC isotypes and of E-cadherin in the regulation of the locomotion of six human colon-adenocarcinoma cell lines. The different levels of the PKC alpha and the E-cadherin expression have predictable implications in the spontaneous locomotory activity. With the use of PKC alpha--specific inhibitors (safingol, Go6976) as well as the PKC delta--specific inhibitor rottlerin, we showed that only PKC alpha plays a major role in the regulation of tumor cell migration. The results were verified by knocking out the translation of PKC isozymes with the use of an antisense oligonucleotide strategy. After stimulation with phorbol ester we observed a translocation and a colocalization of the activated PKC alpha at the plasma membrane to the surrounding extracellular matrix. Furthermore, we investigated the functional involvement of E-cadherin in the locomotion with the use of a blocking antibody. A high level of PKC alpha expression together with a low E-cadherin expression was strongly related to a high migratory activity of the colon carcinoma cells. This correlation was independent of the differentiation grade of the tumor cell lines. Topics: Acetophenones; Benzopyrans; Biological Transport; Cadherins; Carbazoles; Cell Membrane; Cell Movement; Colonic Neoplasms; Enzyme Activation; Enzyme Inhibitors; Humans; Indoles; Isoenzymes; Oligonucleotides, Antisense; Protein Kinase C; Protein Kinase C-alpha; Protein Kinase C-delta; Sphingosine; Tumor Cells, Cultured | 2001 |