rotigaptide has been researched along with Myocardial-Ischemia* in 7 studies
1 review(s) available for rotigaptide and Myocardial-Ischemia
Article | Year |
---|---|
Increasing gap junctional coupling: a tool for dissecting the role of gap junctions.
Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes. In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs and by interfering with the gating of gap junctional channels. Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Atrial Fibrillation; Bone and Bones; Cell Communication; Connexin 43; Female; Gap Junctions; Homeostasis; Humans; Ion Channel Gating; Myocardial Ischemia; Oligopeptides; Osteoblasts | 2007 |
6 other study(ies) available for rotigaptide and Myocardial-Ischemia
Article | Year |
---|---|
Drug development for treatment of cardiac arrhythmias: targeting the gap junctions.
Topics: Action Potentials; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Cardiac Pacing, Artificial; Connexin 43; Coronary Circulation; Disease Models, Animal; Drug Design; Gap Junctions; Heart Conduction System; Heart Rate; Myocardial Infarction; Myocardial Ischemia; Oligopeptides; Phosphorylation; Time Factors; Ventricular Remodeling | 2008 |
Maintenance of intercellular coupling by the antiarrhythmic peptide rotigaptide suppresses arrhythmogenic discordant alternans.
Discordant action potential alternans creates large gradients of refractoriness, which are thought to be the mechanisms linking T-wave alternans to cardiac arrhythmogenesis. Since intercellular coupling acts to maintain synchronization of repolarization between cells, we hypothesized that intercellular uncoupling, such as during ischemia, would initiate discordant alternans and that restoration of intercellular coupling by the gap junction opener rotigaptide may provide a novel approach for suppressing arrhythmogenic discordant alternans. Optical mapping was used to record action potentials from ventricular epicardium of Langendorff-perfused guinea pig hearts. Threshold for spatially synchronized (i.e., concordant) alternans and discordant alternans was determined by increasing heart rate step-wise during 1) baseline, 2) treatment with rotigaptide or vehicle, and 3) global low-flow ischemia + rotigaptide or vehicle. Ischemia reduced the threshold for concordant alternans in both groups from 362 +/- 8 to 305 +/- 9 beats/min (P < 0.01) and for discordant alternans from 423 +/- 6 to 381 +/- 7 beats/min (P < 0.01). Interestingly, rotigaptide also increased the threshold for discordant alternans relative to vehicle both before (438 +/- 7 vs. 407 +/- 8 beats/min, P < 0.05) and during (394 +/- 7 vs. 364 +/- 9 beats/min, P < 0.05) ischemia. Rotigaptide increased conduction velocity and prevented conduction slowing and dispersion of repolarization during ischemia. Confocal immunofluorescence revealed that total connexin43 quantity and cellular distribution were unchanged before or after low-flow ischemia, with and without rotigaptide. However, connexin43 dephosphorylation in response to low-flow ischemia was significantly prevented by rotigaptide (15.9 +/- 7.0 vs. 0.3 +/- 6.4%, P < 0.001). These data suggest that intercellular uncoupling plays an important role in the transition from concordant to discordant alternans. By suppressing discordant alternans, repolarization gradients, and connexinx43 dephosphorylation, rotigaptide may protect against ischemia-induced arrhythmias. Drugs that selectively open gap junctions offer a novel strategy for antiarrhythmic therapy. Topics: Action Potentials; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Cardiac Pacing, Artificial; Connexin 43; Coronary Circulation; Disease Models, Animal; Gap Junctions; Guinea Pigs; Heart Conduction System; Heart Rate; Male; Myocardial Ischemia; Oligopeptides; Phosphorylation; Time Factors | 2008 |
Model-dependent effects of the gap junction conduction-enhancing antiarrhythmic peptide rotigaptide (ZP123) on experimental atrial fibrillation in dogs.
Abnormal intercellular communication caused by connexin dysfunction may be involved in atrial fibrillation (AF). The present study assessed the effect of the gap junctional conduction-enhancing peptide rotigaptide on AF maintenance in substrates that result from congestive heart failure induced by 2-week ventricular tachypacing (240 bpm), atrial tachypacing (ATP; 400 bpm for 3 to 6 weeks), and isolated atrial myocardial ischemia.. Electrophysiological study and epicardial mapping were performed before and after rotigaptide administration in dogs with ATP and congestive heart failure, as well as in similarly instrumented sham dogs that were not tachypaced. For atrial myocardial ischemia, dogs administered rotigaptide before myocardial ischemia were compared with no-drug myocardial ischemia controls. ATP significantly shortened the atrial effective refractory period (P=0.003) and increased AF duration (P=0.008), with AF lasting >3 hours in all 6-week ATP animals. Rotigaptide increased conduction velocity in ATP dogs slightly but significantly (P=0.04) and did not affect the effective refractory period, AF duration, or atrial vulnerability. In dogs with congestive heart failure, rotigaptide also slightly increased conduction velocity (P=0.046) but failed to prevent AF promotion. Rotigaptide had no statistically significant effects in sham dogs. Myocardial ischemia alone increased AF duration and impaired conduction (based on conduction velocity across the ischemic border and indices of conduction heterogeneity). Rotigaptide prevented myocardial ischemia-induced conduction slowing and AF duration increases.. Rotigaptide improves conduction in various AF models but suppresses AF only for the acute ischemia substrate. These results define the atrial antiarrhythmic profile of a mechanistically novel antiarrhythmic drug and suggest that gap junction dysfunction may be more important in ischemic AF than in ATP remodeling or congestive heart failure substrates. Topics: Animals; Anti-Arrhythmia Agents; Atrial Fibrillation; Disease Models, Animal; Dogs; Electrocardiography; Electrophysiology; Gap Junctions; Heart Conduction System; Heart Failure; Myocardial Ischemia; Oligopeptides; Tachycardia, Ectopic Atrial | 2007 |
Identification of ischemia-regulated phosphorylation sites in connexin43: A possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123).
Previous studies suggest that dephosphorylation of connexin43 (Cx43) is related to uncoupling of gap junction communication, which plays an important role in the genesis of ischemia-induced ventricular tachycardia. We studied changes in Cx43 phosphorylation during global ischemia in the absence and presence of the antiarrhythmic peptide analogue rotigaptide (formerly known as ZP123). Phosphorylation analysis was performed on Cx43 purified from isolated perfused rat hearts using matrix-assisted laser desorption/ionization mass spectrometry and liquid chromatography electrospray ionization tandem mass spectrometry. Thirteen different serine phosphorylation sites were identified in Cx43 during non-ischemic conditions, three of which had not previously been described. Within the first 7 min of ischemia, Ser306 became fully dephosphorylated whereas Ser330 became phosphorylated. Between 15 and 30 min of ischemia, the critical time interval where gap junction uncoupling occurs, Ser297 and Ser368 also became fully dephosphorylated. During the same time period, all untreated hearts developed asystole. Treatment with rotigaptide significantly increased the time to ischemia-induced asystole and suppressed dephosphorylation of Ser297 and Ser368 at 30 min of ischemia. Our results suggest that phosphorylation of Ser297 and Ser368 may be involved in functional gating of Cx43 during ischemia and may be possible downstream targets for rotigaptide signaling. Topics: Amino Acid Sequence; Animals; Connexin 43; Heart Arrest; Male; Molecular Sequence Data; Myocardial Ischemia; Oligopeptides; Phosphorylation; Phosphotransferases; Rats; Rats, Sprague-Dawley; Serine | 2006 |
Pharmacological stimulation of cardiac gap junction coupling does not affect ischemia-induced focal ventricular tachycardia or triggered activity in dogs.
The role of gap junction intercellular communication (GJIC) in ischemia-induced focal ventricular tachycardia (VT) is unknown. We have developed a new, stable antiarrhythmic peptide analog named ZP123 that selectively increases GJIC and prevents reentrant VT. Our aim in this study was to use ZP123 as a tool to assess the role of GJIC on occurrence of ischemia-induced focal VT and triggered activity (TA) due to delayed afterdepolarizations (DADs). Focal VT was induced by programmed stimulation in alpha-chloralose-anesthetized, open-chest dogs 1-4 h after coronary artery occlusion. Three-dimensional activation mapping was done using 6 bipolar electrograms on each of 23 multipolar needles in the risk zone. Dogs were randomly assigned to receive either saline or ZP123 cumulatively at three dose levels (an intravenous bolus followed by a 30-min infusion per dose). Attempts to induce VT were repeated in each dose. Mass spectrometry was used to measure plasma ZP123 concentrations. Standard microelectrode techniques were used for in vitro study of DADs and TA. Twenty-six dogs with focal VT were included. ZP123 did not affect the inducibility of focal VT at any plasma concentrations vs. saline (0.8 +/- 0.1 nM, 77 vs. 75%; 7.8 +/- 0.4 nM, 86 vs. 77%; and 78.8 +/- 5.0 nM, 77 vs. 91%). In vitro, ZP123 did not affect the induction of DADs (12/12) and TAs (10/10) in ischemic tissues or tissue removed from the origin of focal VT (DADs, 8/8; TAs, 4/4). Therefore, although indirect, the data with the doses and concentrations used suggest that GJIC may not play a major role in the genesis of focal activity in the ischemic models studied. Topics: Animals; Cell Communication; Dogs; Female; Gap Junctions; Heart; Male; Myocardial Ischemia; Oligopeptides; Tachycardia, Ventricular | 2005 |
ZP123 increases gap junctional conductance and prevents reentrant ventricular tachycardia during myocardial ischemia in open chest dogs.
The aim of this study was to determine if the stable antiarrhythmic peptide (AAP) analogue ZP123 increases gap junctional intercellular conductance and prevents reentrant ventricular tachycardia (VT) during coronary artery occlusion.. Voltage clamp experiments demonstrated that 10 nM ZP123 improved gap junctional intercellular conductance by 69% +/- 20% in pairs of guinea pig ventricular myocytes. VT was induced by programmed stimulation in alpha-chloralose anaesthetized open chest dogs 1 to 4 hours after coronary artery occlusion. Three-dimensional activation mapping was done using six bipolar electrograms on each of 23 multipolar needles in the risk zone. When VT was reproducibly induced, dogs were randomly assigned to receive either saline or ZP123 cumulatively at three dose levels (intravenous bolus followed by 30-min infusion per dose). Attempts to induce VT were repeated in each infusion period. Mass spectrometry was used to measure ZP123 plasma concentrations. Twenty-six dogs with reentrant VT were included. ZP123 significantly prevented reentrant VT at all plasma concentrations vs saline: 1.0 +/- 0.2 nM: 6/12 vs 0/12; 7.7 +/- 0.6 nM: 7/13 vs 1/12; and 69.2 +/- 5.4 nM: 9/13 vs 1/13. The preventive effect of ZP123 on reentrant VT was closely correlated to reversal of functional, unidirectional conduction block. ZP123 did not affect effective refractory period, surface ECG parameters, mean arterial pressure, or infarct size.. The stable AAP analogue ZP123 increased gap junctional intercellular conductance and specifically prevented the induction of reentrant VT during ischemia in a broad dose range without proarrhythmic or hemodynamic side effects. ZP123 is a promising candidate for use in preventing ischemia-induced VT. Topics: Animals; Blood Pressure; Cell Membrane; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Electrocardiography; Female; Gap Junctions; Heart Block; Heart Conduction System; Incidence; Infusions, Intravenous; Male; Models, Cardiovascular; Myocardial Ischemia; Myocytes, Cardiac; Oligopeptides; Reproducibility of Results; Statistics as Topic; Tachycardia, Ventricular | 2003 |