rotigaptide has been researched along with Atrial-Fibrillation* in 10 studies
4 review(s) available for rotigaptide and Atrial-Fibrillation
Article | Year |
---|---|
Nonantiarrhythmic drug therapy for atrial fibrillation.
Recent studies have begun to elucidate the molecular mechanisms that promote the generation and progressive nature of atrial fibrillation. Evidence from both experimental and clinical investigations has implicated an important role for the renin-angiotensin-aldosterone system, inflammation, and oxidative stress, with data that suggest a potential beneficial effect for angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, aldosterone receptor antagonists, antiinflammatory agents, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins), and omega-3 polyunsaturated fatty acids. In addition, compounds that increase gap junctional conductance or that block 5-hydroxytryptamine-4 receptors have also shown promise in the experimental setting. Large-scale, prospective clinical trials will clarify the utility of these new therapeutic approaches to prevent atrial fibrillation in specific clinical settings. Topics: Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Anti-Arrhythmia Agents; Anti-Inflammatory Agents; Antioxidants; Atrial Fibrillation; Calcium Channel Blockers; Connexins; Drugs, Investigational; Fatty Acids, Omega-3; Gap Junctions; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Mineralocorticoid Receptor Antagonists; Oligopeptides; Oxidative Stress; Receptors, Serotonin, 5-HT4; Renin-Angiotensin System; Serotonin 5-HT4 Receptor Antagonists; Serotonin Antagonists | 2007 |
Increasing gap junctional coupling: a tool for dissecting the role of gap junctions.
Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes. In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs and by interfering with the gating of gap junctional channels. Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Atrial Fibrillation; Bone and Bones; Cell Communication; Connexin 43; Female; Gap Junctions; Homeostasis; Humans; Ion Channel Gating; Myocardial Ischemia; Oligopeptides; Osteoblasts | 2007 |
New antiarrhythmic treatment of atrial fibrillation.
Antiarrhythmic pharmaceutical development for the treatment of atrial fibrillation (AF) is moving in several directions. The efficacy of existing drugs, such as carvedilol, for rate control and, possibly, suppression of AF, is more appreciated. Efforts are being made to modify existing agents, such as amiodarone, in an attempt to ameliorate safety and adverse effect concerns. This has resulted in promising data from the deiodinated amiodarone analog, dronedarone, and further work with celivarone and ATI-2042. In an attempt to minimize ventricular proarrhythmia, atrial selective drugs, such as intravenous vernakalant, have demonstrated efficacy in terminating AF in addition to promising data in suppression recurrences when used orally. Several other atrial selective drugs are being developed by multiple manufacturers. Other novel therapeutic mechanisms, such as drugs that enhance GAP junction conduction, are being developed to achieve more effective drug therapy than is offered by existing compounds. Finally, nonantiarrhythmic drugs, such as angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, high-mobility group coenzyme A enzyme inhibitors and omega-3 fatty acids/fish oil, appear to have a role in suppressing AF in certain patient subtypes. Future studies will clarify the role of these drugs in treating AF. Topics: Adenosine; Adenosine A1 Receptor Antagonists; Adrenergic beta-Antagonists; Amiodarone; Anti-Arrhythmia Agents; Atrial Fibrillation; Benzofurans; Biphenyl Compounds; Bridged Bicyclo Compounds, Heterocyclic; Carbazoles; Carvedilol; Cyclopropanes; Dronedarone; Fatty Acids, Omega-3; Furans; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Oligopeptides; Organic Chemicals; Peptidyl-Dipeptidase A; Potassium Channel Blockers; Propanolamines; Purinergic P1 Receptor Agonists | 2007 |
Pharmacological modulation of gap junction function with the novel compound rotigaptide: a promising new principle for prevention of arrhythmias.
Existing anti-arrhythmic therapy is hampered by lack of efficacy and unacceptable side effects. Thus, ventricular tachycardia and fibrillation remains the strongest predictor of in-hospital mortality in patients with myocardial infarction. In atrial fibrillation, rhythm control with conventional ion channel blockers provide no therapeutic benefit relative to rate control. Several lines of research indicate that impaired gap junctional cell-to-cell coupling between neighbouring cardiomyocytes is critical for the development of cardiac re-entry arrhythmias. Rotigaptide is the first drug that has been developed to prevent arrhythmias by re-establishing gap junctional intercellular communication. During conditions with acute cardiac ischaemia, rotigaptide effectively prevents induction of both ventricular and atrial tachyarrhythmia. Moreover, rotigaptide effectively prevents ischaemia reperfusion arrhythmias. At the cellular level, rotigaptide inhibits ischaemia-induced dephosphorylation of Ser297 and Ser368, which is considered important for the gating of connexin43 gap junction channels. No drug-related toxicity has been demonstrated at plasma concentrations 77,000 times above therapeutic concentrations. In rats and dogs, rotigaptide reduces infarct size following myocardial infarction. A series of phase I trials has been completed in which rotigaptide has been administered intravenously to ~200 healthy persons. No drug-related side effects have been demonstrated in healthy human beings. Clinical safety, tolerability and efficacy in patients with heart disease are being evaluated in ongoing clinical trials. Rotigaptide represents a pioneering pharmacological principle with a highly favourable preclinical and clinical safety profile, which makes this molecule a promising drug candidate for the prevention of cardiac arrhythmias. Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Atrial Fibrillation; Gap Junctions; Humans; Oligopeptides; Tachycardia, Ventricular | 2007 |
6 other study(ies) available for rotigaptide and Atrial-Fibrillation
Article | Year |
---|---|
The role of gap junctions in stretch-induced atrial fibrillation.
The aim of this study was to investigate the role of gap junctions in atrial fibrillation (AF) by analysing the effects of a gap junction enhancer and blocker on AF vulnerability and electrophysiological properties of isolated hearts.. The acute atrial stretch model of AF in the isolated rabbit heart was used. Sustained AF (SAF) was induced by a burst of high-frequency stimulation of the Bachmann's bundle. The effective refractory period (ERP) was measured, and the total conduction time (TCT) and the pattern of conduction of the anterior surface of the left atrium were monitored by using an optical mapping system. The effect of enhancing gap junction function by 100-1000 nM rotigaptide (ZP123) and block by 30 μM carbenoxolone on these parameters was measured. SAF inducibility was increased with an elevation of intra-atrial pressure. Enhanced gap junction conductance induced by treatment with 100-1000 nM rotigaptide reduced SAF inducibility, and the gap junction blocker carbenoxolone increased SAF inducibility. In the absence of gap junction enhancer or blocker, normal conduction was observed at 0 cmH2O. When intra-atrial pressure was raised to 12 cmH2O, the conduction pattern was changed to a heterogeneous zig-zag pattern and TCT was prolonged. Conduction pattern was not affected by either agent. Rotigaptide shortened TCT, whereas carbenoxolone prolonged TCT. ERP was significantly shortened with an increase in intra-atrial pressure, but ERP was unaffected by either agent.. Gap junction modulators changed AF inducibility through their effects on atrial conduction, not by altering ERP. Topics: Action Potentials; Animals; Anti-Arrhythmia Agents; Atrial Fibrillation; Atrial Pressure; Carbenoxolone; Gap Junctions; Heart Atria; Heart Rate; Isolated Heart Preparation; Male; Mechanotransduction, Cellular; Muscle Spindles; Oligopeptides; Rabbits; Refractory Period, Electrophysiological; Time Factors | 2014 |
Discovery of (2S,4R)-1-(2-aminoacetyl)-4-benzamidopyrrolidine-2-carboxylic acid hydrochloride (GAP-134)13, an orally active small molecule gap-junction modifier for the treatment of atrial fibrillation.
Rotigaptide (3) is an antiarrhythmic peptide that improves cardiac conduction by modifying gap-junction communication. Small molecule gap-junction modifiers with improved physical properties were identified from a Zealand Pharma peptide library using pharmaceutical profiling, established SAR around 3, and a putative pharmacophore model for rotigaptide. Activity of the compounds was confirmed in a mouse cardiac conduction block model of arrhythmia. Dipeptide 9f (GAP-134) was identified as a potent, orally active gap-junction modifier for clinical development. Topics: Administration, Oral; Animals; Anti-Arrhythmia Agents; Atrial Fibrillation; Benzamides; Dipeptides; Disease Models, Animal; Drug Discovery; Gap Junctions; Mice; Peptide Library; Proline; Structure-Activity Relationship | 2009 |
The gap junction modifier, GAP-134 [(2S,4R)-1-(2-aminoacetyl)-4-benzamido-pyrrolidine-2-carboxylic acid], improves conduction and reduces atrial fibrillation/flutter in the canine sterile pericarditis model.
Gap junction uncoupling can alter conduction pathways and promote cardiac re-entry mechanisms that potentiate many supraventricular arrhythmias, such as atrial fibrillation (AF) and atrial flutter (AFL). Our objective was to determine whether GAP-134 [(2S,4R)-1-(2-aminoacetyl)-4-benzamido-pyrrolidine-2-carboxylic acid], a small dipeptide gap junction modifier, can improve conduction and ultimately prevent AF/AFL. In rat atrial strips subjected to metabolic stress, GAP-134 prevented significantly conduction velocity slowing at 10 nM compared with vehicle (p < 0.01). In the canine sterile pericarditis model, conduction time (CT; n = 5), atrial effective refractory period (AERP; n = 3), and AF/AFL duration/inducibility (n = 16) were measured 2 to 3 days postoperatively in conscious dogs. CT was significantly faster after GAP-134 infusion (average plasma concentration, 250 nM) at cycle lengths of 300 ms (66.2 +/- 1.0 versus 62.0 +/- 1.0 ms; p < 0.001) and 200 ms (64.4 +/- 0.9 versus 61.0 +/- 1.3 ms; p < 0.001). No significant changes in AERP were noted after GAP-134 infusion. The mean number of AF/AFL inductions per animal was significantly decreased after GAP-134 infusion (2.7 +/- 0.6 versus 1.6 +/- 0.8; p < 0.01), with total AF/AFL burden being decreased from 12,280 to 6063 s. Western blot experiments showed no change in connexin 43 expression. At concentrations exceeding those described in the AF/AFL experiments, GAP-134 had no effect on heart rate, blood pressure, or any electrocardiogram parameters. In conclusion, GAP-134 shows consistent efficacy on measures of conduction and AF/AFL inducibility in the canine sterile pericarditis model. These findings, along with its oral bioavailability, underscore its potential antiarrhythmic efficacy. Topics: Animals; Anti-Arrhythmia Agents; Atrial Fibrillation; Atrial Flutter; Benzamides; Connexin 43; Dipeptides; Disease Models, Animal; Dogs; Electric Conductivity; Female; Gap Junctions; Heart Atria; Heart Conduction System; Male; Molecular Structure; Oligopeptides; Pericarditis; Postoperative Complications; Proline; Rats; Rats, Sprague-Dawley; Refractory Period, Electrophysiological | 2009 |
Model-dependent effects of the gap junction conduction-enhancing antiarrhythmic peptide rotigaptide (ZP123) on experimental atrial fibrillation in dogs.
Abnormal intercellular communication caused by connexin dysfunction may be involved in atrial fibrillation (AF). The present study assessed the effect of the gap junctional conduction-enhancing peptide rotigaptide on AF maintenance in substrates that result from congestive heart failure induced by 2-week ventricular tachypacing (240 bpm), atrial tachypacing (ATP; 400 bpm for 3 to 6 weeks), and isolated atrial myocardial ischemia.. Electrophysiological study and epicardial mapping were performed before and after rotigaptide administration in dogs with ATP and congestive heart failure, as well as in similarly instrumented sham dogs that were not tachypaced. For atrial myocardial ischemia, dogs administered rotigaptide before myocardial ischemia were compared with no-drug myocardial ischemia controls. ATP significantly shortened the atrial effective refractory period (P=0.003) and increased AF duration (P=0.008), with AF lasting >3 hours in all 6-week ATP animals. Rotigaptide increased conduction velocity in ATP dogs slightly but significantly (P=0.04) and did not affect the effective refractory period, AF duration, or atrial vulnerability. In dogs with congestive heart failure, rotigaptide also slightly increased conduction velocity (P=0.046) but failed to prevent AF promotion. Rotigaptide had no statistically significant effects in sham dogs. Myocardial ischemia alone increased AF duration and impaired conduction (based on conduction velocity across the ischemic border and indices of conduction heterogeneity). Rotigaptide prevented myocardial ischemia-induced conduction slowing and AF duration increases.. Rotigaptide improves conduction in various AF models but suppresses AF only for the acute ischemia substrate. These results define the atrial antiarrhythmic profile of a mechanistically novel antiarrhythmic drug and suggest that gap junction dysfunction may be more important in ischemic AF than in ATP remodeling or congestive heart failure substrates. Topics: Animals; Anti-Arrhythmia Agents; Atrial Fibrillation; Disease Models, Animal; Dogs; Electrocardiography; Electrophysiology; Gap Junctions; Heart Conduction System; Heart Failure; Myocardial Ischemia; Oligopeptides; Tachycardia, Ectopic Atrial | 2007 |
Effects of the gap junction modifier rotigaptide (ZP123) on atrial conduction and vulnerability to atrial fibrillation.
Altered conduction is associated with increased atrial fibrillation (AF) vulnerability in canine models of chronic mitral regurgitation (MR) and heart failure (HF). Rotigaptide (ZP123) augments gap junction conductance, improving cell-to-cell coupling. We studied the effects of rotigaptide on atrial conduction and AF vulnerability in the canine MR and HF models.. Twenty-one dogs in 3 groups were studied: control (n=7), chronic MR induced by mitral avulsion (n=7), and HF induced by ventricular tachypacing (n=7). Epicardial mapping of both atria was performed with a 512-electrode array at baseline and at increasing rotigaptide doses (10, 50, and 200 nmol/L). Conduction velocity increased in both atria in control animals and MR animals (maximum percentage increase: 24+/-5%, 38+/-6% [P<0.001, <0.001] in the left atrium and 19+/-9%, 18+/-3% [P<0.001, <0.001] in the right atrium). Conduction velocity did not change in the left atrium of the HF group and increased minimally in the right atrium (3+/-3%, 17+/-5% [P=NS, P=0.001]). AF duration was increased at baseline in MR and HF animals (control: 16+/-25 seconds, MR: 786+/-764 seconds, HF: 883+/-684 seconds; P=0.013). At 50 nmol/L of rotigaptide, duration of AF markedly decreased in the MR animals (96% reduction, P<0.001), reducing AF duration to that of control animals (control: 9+/-11 seconds, MR: 14+/-16 seconds, HF: 1622+/-355 seconds; P=0.04).. Gap junction modulation with rotigaptide reduces AF vulnerability in a canine MR model of AF to a level similar to control animals but does not affect AF vulnerability in the canine HF model. This may be a novel therapeutic target in some forms of AF. Topics: Animals; Anti-Arrhythmia Agents; Atrial Fibrillation; Disease Models, Animal; Disease Susceptibility; Dogs; Gap Junctions; Heart Atria; Heart Conduction System; Oligopeptides; Tachycardia, Ventricular | 2006 |
Rotigaptide (ZP123) improves atrial conduction slowing in chronic volume overload-induced dilated atria.
Chronic atrial dilation is associated with atrial conduction velocity slowing and an increased risk of developing atrial tachyarrhythmias. Rotigaptide (ZP123) is a selective gap junction modifier that increases cardiac gap junctional intercellular communication. We hypothesised that rotigaptide treatment would increase atrial conduction velocity and reduce the inducibility to atrial tachyarrhythmias in a model of chronic volume overload induced chronic atrial dilatation characterized by atrial conduction velocity slowing. Chronic volume overload was created in Japanese white rabbits by arterio-venous shunt formation. Atrial conduction velocity and atrial tachyarrhythmias inducibility were examined in Langendorff-perfused chronic volume overload hearts (n=12) using high-resolution optical mapping before and after treatment with rotigaptide. Moreover, expression levels of atrial gap junction proteins (connexin40 and connexin43) were examined in chronic volume overload hearts (n=6) and compared to sham-operated controls (n=6). Rotigaptide treatment significantly increased atrial conduction velocity in chronic volume overload hearts, however, rotigaptide did not decrease susceptibility to the induction of atrial tachyarrhythmias. Protein expressions of Cx40 and Cx43 were decreased by 32% and 72% (P<0.01), respectively, in chromic volume overload atria compared to control. To conclude, rotigaptide increased atrial conduction velocity in a rabbit model of chromic volume overload induced atrial conduction velocity slowing. The demonstrated effect of rotigaptide on atrial conduction velocity did not prevent atrial tachyarrhythmias inducibility. Whether rotigaptide may possess antiarrhythmic efficacy in other models of atrial fibrillation remains to be determined. Topics: Animals; Anti-Arrhythmia Agents; Atrial Fibrillation; Blood Volume; Blotting, Western; Connexin 43; Connexins; Echocardiography; Electrophysiology; Gap Junction alpha-5 Protein; Heart Atria; Heart Conduction System; Oligopeptides; Organ Size; Rabbits; Rats; Vasodilation | 2006 |