rosmarinic-acid and Protein-Aggregation--Pathological

rosmarinic-acid has been researched along with Protein-Aggregation--Pathological* in 4 studies

Reviews

1 review(s) available for rosmarinic-acid and Protein-Aggregation--Pathological

ArticleYear
Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation.
    European journal of medicinal chemistry, 2019, Apr-01, Volume: 167

    A host of human diseases, including Parkinson's disease and Dementia with Lewy bodies, are suspected to be directly linked to protein aggregation. Amyloid protein aggregates and oligomeric intermediates of α-synuclein are observed in synucleinopathies and considered to be mediators of cellular toxicity. Hence, α-synuclein has seen as one of the leading and most compelling targets and is receiving a great deal of attention from researchers. Nevertheless, there is no neuroprotective approach directed toward Parkinson's disease or other synucleinopathies so far. In this review, we summarize the available data concerning inhibitors of α-synuclein aggregation and their advancing towards clinical use. The compounds are grouped according to their chemical structures, providing respective insights into their mechanism of action, pharmacology, and pharmacokinetics. Overall, shared structure-activity elements are emerging, as well as specific binding modes related to the ability of the modulators to establish hydrophobic and hydrogen bonds interactions with the protein. Some molecules with encouraging in vivo data support the possibility of translation to the clinic.

    Topics: alpha-Synuclein; Amyloidogenic Proteins; Drug Discovery; Humans; Protein Aggregation, Pathological; Structure-Activity Relationship

2019

Other Studies

3 other study(ies) available for rosmarinic-acid and Protein-Aggregation--Pathological

ArticleYear
Rosmarinic acid protects against MPTP-induced toxicity and inhibits iron-induced α-synuclein aggregation.
    Neuropharmacology, 2019, Volume: 144

    Rosmarinic acid (RA) is a naturally occurring polyphenolic compound. In this study, we demonstrated that RA could protect against the degeneration of the nigrostriatal dopaminergic system in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease (PD). In addition, RA could inhibit MPTP-induced decrease of superoxide dismutase (SOD) and tyrosine hydroxylase (TH) and increase in nigral iron content. Further studies elucidated the effects of RA on iron-induced neurotoxicity and the possible underlying mechanisms in the SK-N-SH cells. Results showed that iron could induce a decrease in the mitochondrial transmembrane potential and result in α-synuclein aggregation in the SK-N-SH cells, which could be restored by RA pretreatment. Further results showed RA pretreatment could inhibit iron-induced α-synuclein aggregation by up-regulating hemeoxygenase-1 (HO-1). In addition, iron could increase the mRNA levels of α-synuclein via iron responsive element/iron regulatory protein (IRE/IRP) system. RA pretreatment could decrease the mRNA levels of α-synuclein by decreasing the protein levels of IRP1. These results indicated that RA protected against iron-induced α-synuclein aggregation by up-regulating HO-1 and inhibiting α-synuclein expression.

    Topics: alpha-Synuclein; Animals; Antiparkinson Agents; Cell Line, Tumor; Cinnamates; Depsides; Dopaminergic Neurons; Humans; Iron; Male; Mice, Inbred C57BL; MPTP Poisoning; Neuroprotective Agents; Protein Aggregation, Pathological; Random Allocation; Rosmarinic Acid

2019
Rosmarinic acid suppresses Alzheimer's disease development by reducing amyloid β aggregation by increasing monoamine secretion.
    Scientific reports, 2019, 06-18, Volume: 9, Issue:1

    A new mechanism is revealed by which a polyphenol, rosmarinic acid (RA), suppresses amyloid β (Aβ) accumulation in mice. Here we examined the brains of mice (Alzheimer's disease model) using DNA microarray analysis and revealed that the dopamine (DA)-signaling pathway was enhanced in the group fed RA versus controls. In the cerebral cortex, the levels of monoamines, such as norepinephrine, 3,4-dihydroxyphenylacetic acid, DA, and levodopa, increased after RA feeding. The expression of DA-degrading enzymes, such as monoamine oxidase B (Maob), was significantly downregulated in the substantia nigra and ventral tegmental area, both DA synthesis regions. Following in vitro studies showing that monoamines inhibited Aβ aggregation, this in vivo study, in which RA intake increased concentration of monoamine by reducing Maob gene expression, builds on that knowledge by demonstrating that monoamines suppress Aβ aggregation. In conclusion, RA-initiated monoamine increase in the brain may beneficially act against AD.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Biogenic Monoamines; Brain; Cinnamates; Depsides; Female; Gene Expression Profiling; Gene Ontology; Mice, Inbred C57BL; Mice, Transgenic; Monoamine Oxidase; Norepinephrine; Oligonucleotide Array Sequence Analysis; Protein Aggregation, Pathological; Rosmarinic Acid; Substantia Nigra; Ventral Tegmental Area

2019
Inhibition of amyloid fibrillation and cytotoxicity of lysozyme fibrillation products by polyphenols.
    International journal of biological macromolecules, 2015, Volume: 80

    An increasing number of studies conducted under in vitro and in vivo conditions, have concluded that polyphenols, compounds frequently occurring in many herbs with antioxidant properties, prevent and reverse amyloid fibril formation. However, the mechanisms by which these natural products modulate the protein aggregation process are poorly understood. Herein, a range of techniques including thioflavin T (ThT) and ANS fluorescence assays, electron microscopy and circular dichroism have been employed to determine the efficacy of rosmarinic acid (RA) and resveratrol (Res) on the inhibition/reversion of fibrillogenesis and hindering cytotoxicity induced by protofibrils and amyloid fibrils of hen egg white lysozyme (HEWL). Results demonstrated that both polyphenols effectively inhibit fibrillogenesis and destabilize preformed fibrils of HEWL in a concentration-dependent manner. Cytotoxicity protection on PC12 cells was also observed using the MTT assay, ROS production assay, and phase-contrast microscopy. It is suggested that the mechanism underlying the inhibitory effects of RA and Res is to prevent hydrophobic interactions between HEWL amyloidogenic prefibrillar species, although additional studies is needed to elucidate the detailed mechanisms involved. A combination of antioxidative and anti-amyloidogenic properties of these molecules may provide them with the described neuroprotective capacities.

    Topics: Amyloid; Animals; Antioxidants; Cell Shape; Cell Survival; Cinnamates; Depsides; Drug Evaluation, Preclinical; Hydrophobic and Hydrophilic Interactions; Inhibitory Concentration 50; Muramidase; PC12 Cells; Protein Aggregation, Pathological; Protein Stability; Protein Structure, Secondary; Rats; Resveratrol; Rosmarinic Acid; Stilbenes

2015