rosmarinic-acid and Obesity

rosmarinic-acid has been researched along with Obesity* in 2 studies

Other Studies

2 other study(ies) available for rosmarinic-acid and Obesity

ArticleYear
Protective effect of rosmarinic acid-rich extract from Trichodesma khasianum Clarke against microbiota dysbiosis in high-fat diet-fed obese mice.
    Food research international (Ottawa, Ont.), 2023, Volume: 164

    Hypertrophy of adipose tissues and dysbiosis are hallmarks of obesity. Although drugs are applied for obesity treatment, side effects limit their use. The anti-obesity capacity of rosmarinic acid (RA) has been documented. Trichodesma khasianum Clarke is an edible RA-rich plant grown in Taiwan. Our previous study found that an 80 % ethanol extract of T. khasianum Clarke leaves (80EETC) ameliorates gastric mucosal damage through its anti-inflammatory, antioxidant, and microbiota modulation abilities. However, the anti-obesity effect of 80EETC remains unclear. Therefore, the objective of this study was to explore the protective effects of low-dose 80EETC (125 mg/kg b.w., 80EETCL) or high-dose 80EETC (250 mg/kg b.w., 80EETCH) on obesity development through gut microbiota modulation in high-fat diet (HFD)-induced C57BL/6 mice. The results showed a high RA content (89.2 ± 7.4 mg/g) in 80EETC. 80EETC administration significantly decreased body weight, body fat ratio, serum lipid levels (TC, TG, and LDL-C), adipose tissue accumulation, malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α) in HFD-fed mice. Furthermore, supplementation with 80EETC reduced the Firmicutes/Bacteroidetes ratio and enhanced the relative abundance of gut microbiota (p_Bacteroidetes, f_Lactobacillus, f_Muribaculaceae, f_Prevotellaceae, g_Lactobacillus, g_Prevotellaceae_NK3B31_group, g_Ruminococcaceae_UCG-013, and g_Ruminococcaceae_UCG-014), which negatively correlated with obesity-related factors such as body weight, energy intake, fat accumulation in adipose tissue, TC, TG, LDL, and MDA. In conclusion, RA-rich 80EETC had a protective effect against obesity development and it has potential in healthy food applications.

    Topics: Animals; Bacteroidetes; Body Weight; Diet, High-Fat; Dysbiosis; Mice; Mice, Inbred C57BL; Mice, Obese; Microbiota; Obesity; Plant Extracts; Rosmarinic Acid

2023
Rosmarinic acid attenuates obesity and obesity-related inflammation in human adipocytes.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2021, Volume: 149

    Chronic low-grade inflammation is a hallmark of obesity and its related metabolic disorders. At the same time signaling from pro-inflammatory factors such as transforming growth factor beta (TGF-β) or interleukin 17A (IL-17A) are proposed as crucial for the commitment of fibroblast progenitor cells towards adipogenic differentiation. Modulation of inflammation during adipogenic differentiation is incompletely explored as a potential approach to prevent metabolic disorders. Rosmarinic acid (RA) is a caffeic acid derivative known for its anti-inflammatory effects. Experimental studies of its activity on adipogenic factors or in vivo obesity models are, however, controversial and hence insufficient. Here, we investigated the anti-adipogenic action of RA in human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. Gene expression levels of key players in adipogenesis and lipid metabolism were assessed. Furthermore, a molecular mechanism of action was proposed. The most prominent effect was found on the translation of C/EBPα, PPARγ and adiponectin, as well as on the modulation of TGF1B and IL17A. Interestingly, involvement of NRF2 signaling was identified upon RA treatment. In summary, our findings indicate that RA prevents inflammation and excessive lipid accumulation in human adipocytes. Data from the molecular analysis demonstrate that RA has potential for treatment of obesity and obesity-related inflammation.

    Topics: Adipocytes; Adipogenesis; CCAAT-Enhancer-Binding Proteins; Cell Survival; Cells, Cultured; Cinnamates; Depsides; Gene Expression Regulation; Humans; Inflammation; Lipolysis; Molecular Structure; Obesity; Oxidative Stress; Rosmarinic Acid

2021