rosmarinic-acid and Glioma

rosmarinic-acid has been researched along with Glioma* in 3 studies

Other Studies

3 other study(ies) available for rosmarinic-acid and Glioma

ArticleYear
Rosmarinic acid inhibits cell proliferation, migration, and invasion and induces apoptosis in human glioma cells.
    International journal of molecular medicine, 2021, Volume: 47, Issue:5

    There is a growing evidence that Fyn kinase is upregulated in glioblastoma multiforme (GBM), where it plays a key role in tumor proliferation and invasion. In the present study, the antitumor effects of rosmarinic acid (RA), a Fyn inhibitor, were explored in human‑derived U251 and U343 glioma cell lines. These cells were treated with various concentrations of RA to determine its effects on proliferation, migration, invasion, apoptosis, and gene and protein expression levels. The CCK‑8 assay revealed that RA significantly suppressed cell viability of U251 and U343 cells. Furthermore, RA significantly reduced proliferation rates, inhibited migration and invasion, and decreased the expression levels of invasion‑related factors, such as matrix metalloproteinase (MMP)‑2 and MMP‑9. TUNEL staining revealed that RA resulted in a dose‑dependent increase of U251 and U343 cell apoptosis. In line with this finding, the expression of apoptosis suppressor protein Bcl‑2 was downregulated and that of the pro‑apoptotic proteins Bax and cleaved caspase‑3 was increased. In addition, it was revealed that the phosphatidylinositol 3‑kinase (PI3K)/Akt/nuclear factor‑κB (NF‑κB) signaling pathway was involved in RA‑induced cytotoxicity in U251 and U343 cells. Collectively, the present study suggested RA as a drug candidate for the treatment of GBM.

    Topics: Apoptosis; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cinnamates; Depsides; Glioma; Humans; Neoplasm Invasiveness; Rosmarinic Acid

2021
Rosmarinic acid and siRNA combined therapy represses Hsp27 (HSPB1) expression and induces apoptosis in human glioma cells.
    Cell stress & chaperones, 2018, Volume: 23, Issue:5

    High expression of Hsp27 in glioma cells has been closely associated with tumor cell proliferation and apoptosis inhibition. The aim of the present study was to asses the effects of rosmarinic acid (RA) on Hsp27 expression and apoptosis in non-transfected and transfected human U-87 MG cells. The effect of rosmarinic acid was compared to quercetin, which is known to be a good Hsp27 inhibitor. In order to block the expression of Hsp27 gene (HSPB1), transfection with specific siRNAs was performed. Western blotting technique was used to assess the Hsp27 expression, and caspase-3 colorimetric activity assay was performed to determine apoptosis induction. According to the results, it was found that RA and quercetin effectively silenced Hsp27 and both agents induced apoptosis by activating the caspase-3 pathway. Eighty and 215 μM RA decreased the level of Hsp27 by 28.8 and 46.7% and induced apoptosis by 30 and 54%, respectively. For the first time, we reported that rosmarinic acid has the ability to trigger caspase-3 induced apoptosis in human glioma cells. As a result of siRNA transfection, the Hsp27 gene was silenced by ~ 50% but did not cause a statistically significant change in caspase-3 activation. It was also observed that apoptosis was induced at a higher level as a result of Hsp27 siRNA and subsequent quercetin or RA treatment. siRNA transfection and 215 μM RA treatment suppressed Hsp27 expression level by 90.5% and increased caspase-3 activity by 58%. Herein, we demonstrated that RA administered with siRNA seems to be a potent combination for glioblastoma therapy.

    Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Survival; Cinnamates; Combined Modality Therapy; Depsides; Glioma; Heat-Shock Proteins; HSP27 Heat-Shock Proteins; Humans; Molecular Chaperones; Quercetin; RNA Interference; RNA, Small Interfering; Rosmarinic Acid; Transfection

2018
Bioactive triterpenoid saponins and phenolic compounds against glioma cells.
    Bioorganic & medicinal chemistry letters, 2014, Nov-15, Volume: 24, Issue:22

    A total of 54 natural origin compounds were evaluated for their activity in inhibiting the proliferation of glioma cells. Results showed that four Aesculus polyhydroxylated triterpenoid saponins (3-6), six Gleditsia triterpenoid saponins (7-12), and five phenolic compounds (43-46, 51) had dose-dependent activity suppressing the proliferation of both C6 and U251 cells. Structure-activity relationship analysis suggested that the acetyl group at C-28 for the Aesculus saponins and the monoterpenic acid moiety for the Gleditsia saponins could be critical for the activity of these active compounds. Aesculioside H (4), gleditsioside A (7), and feuric acid 3,4-dihydroxyphenethyl ester (FADPE, 46) were the three most active compounds from the different types of the active compounds and induced apoptosis and necrosis in glioma cells.

    Topics: Animals; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Glioma; Humans; Phenols; Plant Extracts; Rats; Saponins; Structure-Activity Relationship; Triterpenes

2014