rosmarinic-acid and Cognition-Disorders

rosmarinic-acid has been researched along with Cognition-Disorders* in 2 studies

Reviews

1 review(s) available for rosmarinic-acid and Cognition-Disorders

ArticleYear
Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders.
    Advances in nutrition (Bethesda, Md.), 2014, Volume: 5, Issue:4

    Neurodegenerative disorders and diseases (NDDs) that are either chronically acquired or triggered by a singular detrimental event are a rapidly growing cause of disability and/or death. In recent times, there have been major advancements in our understanding of various neurodegenerative disease states that have revealed common pathologic features or mechanisms. The many mechanistic parallels discovered between various neurodegenerative diseases suggest that a single therapeutic approach may be used to treat multiple disease conditions. Of late, natural compounds and supplemental substances have become an increasingly attractive option to treat NDDs because there is growing evidence that these nutritional constituents have potential adjunctive therapeutic effects (be it protective or restorative) on various neurodegenerative diseases. Here we review relevant experimental and clinical data on supplemental substances (i.e., curcuminoids, rosmarinic acid, resveratrol, acetyl-L-carnitine, and ω-3 (n-3) polyunsaturated fatty acids) that have demonstrated encouraging therapeutic effects on chronic diseases, such as Alzheimer's disease and neurodegeneration resulting from acute adverse events, such as traumatic brain injury.

    Topics: Acetylcarnitine; Alzheimer Disease; Brain; Brain Injuries; Cinnamates; Cognition Disorders; Curcumin; Depsides; Diet; Dietary Supplements; Fatty Acids, Omega-3; Humans; Neurodegenerative Diseases; Oxidative Stress; Polyphenols; Resveratrol; Rosmarinic Acid; Stilbenes

2014

Other Studies

1 other study(ies) available for rosmarinic-acid and Cognition-Disorders

ArticleYear
Rosmarinic acid protects rat hippocampal neurons from cerebral ischemia/reperfusion injury via the Akt/JNK3/caspase-3 signaling pathway.
    Brain research, 2017, 02-15, Volume: 1657

    Cerebral ischemia/reperfusion injury can result in neuronal death, which further results in brain damage and can even lead to death. Although recent studies showed that rosmarinic acid (RA) exerts neuroprotective effects and attenuates ischemia-induced brain injury and neuronal cell death, little is known about the precise mechanisms that occur during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to examine the underlying mechanism of the neuroprotective effects of RA against ischemic brain injury induced by cerebral I/R. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. We randomly divided rats into five groups: sham, I/R, I/R+RA, I/R+Vehicle and I/R+RA+LY. Open-field, closed-field and Morris water maze tests were carried our separately to examine the anxiety and cognitive behavior of each group. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. The levels of p-Akt, p-JNK3 and cleaved caspase-3 in the hippocampus were also examined by Western blotting. Our results showed that administration of RA protected locomotive ability, relieved anxiety behavior and protected cognitive ability in cerebral I/R-injured rats. Additionally, RA significantly protected neurons in the hippocampal CA1 region against cerebral I/R-induced damage. Furthermore, RA increased the phosphorylation of Akt1, downregulated the phosphorylation of JNK3 and reduced the expression of cleaved caspase-3. Finally, the Akt inhibitor LY294002 reversed all the protective effects of RA, indicating that RA protects neurons in the hippocampal CA1 region from ischemic damage through the Akt/JNK3/caspase-3 signaling pathway.

    Topics: Animals; Anxiety; Apoptosis; Brain Ischemia; CA1 Region, Hippocampal; Caspase 3; Cell Survival; Cinnamates; Cognition Disorders; Depsides; Disease Models, Animal; Male; Maze Learning; Mitogen-Activated Protein Kinase 10; Neurons; Neuroprotective Agents; Phosphorylation; Proto-Oncogene Proteins c-akt; Random Allocation; Rats, Sprague-Dawley; Reperfusion Injury; Rosmarinic Acid

2017