roflumilast-n-oxide has been researched along with Hypertension* in 2 studies
2 other study(ies) available for roflumilast-n-oxide and Hypertension
Article | Year |
---|---|
Effects of rolipram and roflumilast, phosphodiesterase-4 inhibitors, on hypertension-induced defects in memory function in rats.
Hypertension (HT) is a prevailing risk factor for cognitive impairment, the most common cause of vascular dementia; yet, no possible mechanism underlying the cognitive impairment induced by hypertension has been identified so far. Inhibition of PDE-4 has been shown to increase phosphorylation of cAMP-response element binding protein in the hippocampus and enhance the memory performance. Here, we examined the effects of PDE-4 inhibitors, rolipram and roflumilast, on the impairment of learning and memory observed in hypertensive rats. We used 2k-1c hypertensive model to induce learning and memory defects. In addition, mRNA expression of PDE-4 sub-types A-D was also assessed in the hippocampus tissue. Systolic blood pressure (SBP) was measured by tail-cuff method was significantly increased in 2k-1c rats when compared to sham operated rats; this effect was reversed by clonidine, whereas, PDE-4 inhibitors did not. PDE-4 inhibitors significantly reversed time induced memory deficit in novel object recognition task (NORT). Further, the retention latency on the second day in the elevated plus maze model was significantly shortened after repeated administration of rolipram and roflumilast. Plasma and brain concentrations of rolipram, roflumilast and roflumilast N-oxide were also measured after the NORT and showed linear increase in plasma and brain concentrations. The PDE4B and PDE4D gene expression was significantly enhanced in hypertensive rats compared with sham operated however PDE4A and PDE4C remained unaltered. Repeated treatment with PDE-4 inhibitors caused down regulation of PDE4B and PDE4D in hypertensive rats. These results suggest that inhibition of PDE-4 ameliorates HT-induced impairment of learning and memory functions. Topics: Aminopyridines; Animals; Benzamides; Blood Pressure; Brain; Cognition; Corticosterone; Cyclic Nucleotide Phosphodiesterases, Type 4; Cyclopropanes; Gene Expression Regulation, Enzymologic; Hypertension; Male; Maze Learning; Memory; Phosphodiesterase 4 Inhibitors; Rats; Rats, Wistar; Recognition, Psychology; RNA, Messenger; Rolipram | 2015 |
Phosphodiesterase-4 inhibitors ameliorates cognitive deficits in deoxycorticosterone acetate induced hypertensive rats via cAMP/CREB signaling system.
Phosphodiesterase-4 (PDE-4) inhibitors promote memory by blocking the degradation of cAMP. Existing evidence also shows that neuronal survival and plasticity are dependent on the phosphorylation of cAMP-response element-binding protein. In this regard, PDE-4 inhibitors have also been shown to reverse pharmacologically and genetically induced memory impairment in animal models. In the present study, the authors examined the effect of both rolipram and roflumilast (PDE-4 inhibitors) on the impairment of learning and memory observed in hypertensive rats. Deoxycorticosterone acetate (DOCA) salt hypertensive model was used to induce learning and memory deficits. The mRNA expression of different PDE-4 subtypes along with the protein levels of pCREB and BDNF in the hippocampus was quantified. Systolic blood pressure was significantly increased in DOCA salt hypertensive rats when compared to sham operated rats. This effect was reversed by clonidine, an α2 receptor agonist, while PDE-4 inhibitors did not. PDE-4 inhibitors significantly improved the time-induced memory deficits in object recognition task (ORT). In DOCA salt hypertensive rats, the gene expression of PDE-4B and PDE-4D was significantly increased. Furthermore, both pCREB and BDNF showed decreased levels of expression in hypertensive rats in comparison to sham operated rats. Repeated administration of PDE-4 inhibitors significantly decreased both PDE-4B and PDE-4D with an increase in the expression of pCREB and BDNF in hypersensitive rats. Also, rolipram, roflumilast and roflumilast N-oxide showed a linear increase in the plasma and brain concentrations after ORT. Our present findings suggested that PDE-4 inhibitors ameliorate hypertension-induced learning impairment via cAMP/CREB signaling that regulates BDNF expression downstream in the rat hippocampus. Topics: Adrenergic alpha-2 Receptor Agonists; Aminopyridines; Animals; Antihypertensive Agents; Benzamides; Brain-Derived Neurotrophic Factor; Clonidine; Cognition Disorders; Cyclic AMP; Cyclic AMP Response Element-Binding Protein; Cyclopropanes; Desoxycorticosterone Acetate; Disease Models, Animal; Hippocampus; Hypertension; Male; Memory; Nootropic Agents; Phosphodiesterase 4 Inhibitors; Rats; Rats, Wistar; Rolipram | 2015 |