robalzotan and Disease-Models--Animal

robalzotan has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for robalzotan and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
The effect of NAD-299 and TCB-2 on learning and memory, hippocampal BDNF levels and amyloid plaques in Streptozotocin-induced memory deficits in male rats.
    Psychopharmacology, 2018, Volume: 235, Issue:10

    Alzheimer's disease (AD) is the most common form of dementia characterized by a progressive decline in cognitive function. The serotonergic system via the 5-HT1A receptor and 5-HT2A receptor is proposed to affect the cognitive process.. In the present study, the effects of NAD-299 (5-HT1AR antagonist) and TCB-2 (5-HT2AR agonist) on learning and memory processes, hippocampal brain-derived neurotrophic factor (BDNF) levels, neuronal necrosis, and Aβ plaque production have been investigated on the intracerebroventricular (icv) injection of streptozotocin (STZ)-induced memory deficits in rats.. Fifty-four adult male Wistar rats (250-300 g) were divided into six groups (n = 9 in each group): control, sham-operated, AD (icv-STZ (3 mg/kg, 10 μl)), AD+NAD-299 (5 μg/1 μl icv for 30 days), AD+TCB-2 (5 μg/1 μl icv for 30 days), and AD+NAD-299 + TCB-2 (NAD-299 (5 μg/0.5 μl icv) and TCB-2 (5 μg/0.5 μl icv) for 30 days). Following the treatment period, rats were subjected to behavioral tests of learning and memory. Then, hippocampal BDNF, amyloid-beta (Aβ) plaque, and neuronal loss were determined by ELISA Kit, Congo red staining, and Nissl staining, respectively.. The results of behavioral tests showed that icv-STZ injection decreased the discrimination index in the novel object recognition (NOR) test. In the passive avoidance learning (PAL) task, icv-STZ injection significantly decreased step-through latency (STLr) and increased time spent in dark compartment (TDC). Treatment with NAD-299, TCB-2, and NAD-299 + TCB-2 attenuated the STZ-induced memory impairment in both NOR and PAL tasks. icv-STZ induced a decrease in hippocampal BDNF levels and increased Aβ plaques production in the brain, whereas treatment with NAD-299, TCB-2, and NAD-299 + TCB-2 reduced Aβ plaques in the brain and increased the hippocampal BDNF level. Results of Nissl staining showed that icv-STZ injection increased neuronal loss in the hippocampus, while treatment with NAD-299, TCB-2, and NAD-299 + TCB-2 reduced hippocampal neurodegeneration.. These findings suggest that 5-HT1AR blockade by NAD-299 and 5-HT2AR activation by TCB-2 improve cognitive dysfunction in icv-STZ-treated rats, and these drugs may potentially prevent the progression of AD.

    Topics: Animals; Avoidance Learning; Benzopyrans; Brain-Derived Neurotrophic Factor; Bridged Bicyclo Compounds; Cognition; Disease Models, Animal; Hippocampus; Male; Memory Disorders; Methylamines; Plaque, Amyloid; Random Allocation; Rats; Rats, Wistar; Receptor, Serotonin, 5-HT2A; Streptozocin

2018
Emotional memory impairments in a genetic rat model of depression: involvement of 5-HT/MEK/Arc signaling in restoration.
    Molecular psychiatry, 2012, Volume: 17, Issue:2

    Cognitive dysfunctions are common in major depressive disorder, but have been difficult to recapitulate in animal models. This study shows that Flinders sensitive line (FSL) rats, a genetic rat model of depression, display a pronounced impairment of emotional memory function in the passive avoidance (PA) task, accompanied by reduced transcription of Arc in prefrontal cortex and hippocampus. At the cellular level, FSL rats have selective reductions in levels of NMDA receptor subunits, serotonin 5-HT(1A) receptors and MEK activity. Treatment with chronic escitalopram, but not with an antidepressant regimen of nortriptyline, restored memory performance and increased Arc transcription in FSL rats. Multiple pharmacological manipulations demonstrated that procognitive effects could also be achieved by either disinhibition of 5-HT(1A)R/MEK/Arc or stimulation of 5-HT₄R/MEK/Arc signaling cascades. Taken together, studies of FSL rats in the PA task revealed reversible deficits in emotional memory processing, providing a potential model with predictive and construct validity for assessments of procognitive actions of antidepressant drug therapies.

    Topics: AIDS-Related Complex; Analysis of Variance; Animals; Avoidance Learning; Benzopyrans; Brain-Derived Neurotrophic Factor; Citalopram; Depression; Disease Models, Animal; Dizocilpine Maleate; Emotions; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Exploratory Behavior; Gene Expression Regulation; Hippocampus; Immunoprecipitation; MAP Kinase Signaling System; Memory Disorders; Prefrontal Cortex; Rats; Rats, Mutant Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Serotonin; Selective Serotonin Reuptake Inhibitors; Serotonin; Swimming

2012
The selective 5-hydroxytryptamine 1A antagonist, AZD7371 [3(R)-(N,N-dicyclobutylamino)-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide (R,R)-tartrate monohydrate] (robalzotan tartrate monohydrate), inhibits visceral pain-related visceromotor, but not a
    The Journal of pharmacology and experimental therapeutics, 2009, Volume: 329, Issue:3

    5-Hydroxytryptamine 1A (5-HT(1A)) receptors have been suggested as a target for the treatment of irritable bowel syndrome (IBS). A recent clinical trial investigating the efficacy of the selective 5-HT(1A) antagonist AZD7371 [3(R)-(N,N-dicyclobutylamino)-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide (R,R)-tartrate monohydrate] showed no symptomatic improvement in IBS patients. We characterized the mechanisms mediating potential analgesic effects of AZD7371 in a model of colorectal distension (CRD)-induced visceral pain in rats to understand its mechanism of action and the lack of clinical efficacy. Visceromotor and cardiovascular responses (telemetry) were assessed in conscious rats during noxious CRD (80 mm Hg). Effects of AZD7371 (3-300 nmol/kg i.v.; 1-30 micromol/kg p.o.) and a reference 5-HT(1A) antagonist, WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexanecarboxamide maleate salt; 3-300 nmol/kg i.v.), were assessed. Effects of intracerebroventricular AZD7371 were also evaluated. Intravenous AZD7371 or WAY-100635 and oral AZD7371 dose-dependently inhibited visceromotor responses to CRD (ED(50), 203, 231, and 14 micromol/kg, respectively). In telemetrized rats, oral AZD7371 inhibited visceromotor responses to CRD without affecting the concomitant hypertensive and tachycardic responses. Intracerebroventricular AZD7371 did not affect visceromotor responses, whereas it inhibited micturition. None of the doses tested induced visible gross side effects. AZD7371, likely acting at a spinal site, inhibited the visceromotor but not the cardiovascular responses to visceral pain in the CRD model in rats. Although agents effective on multiple pain-related readouts in the CRD model (e.g., pregabalin or clonidine) alleviate IBS symptoms, AZD7371, which is effective on only one pain-related pseudoaffective readout, does not. Data from preclinical CRD models of visceral pain need to be interpreted cautiously as it relates to their clinical translational value.

    Topics: Abdominal Muscles; Abdominal Pain; Animals; Benzopyrans; Blood Pressure; Cardiovascular Physiological Phenomena; Colonic Diseases; Dilatation, Pathologic; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Heart Rate; Piperazines; Pyridines; Rats; Rats, Sprague-Dawley; Serotonin 5-HT1 Receptor Antagonists; Serotonin Antagonists; Urination

2009