ro3244794 has been researched along with Inflammation* in 2 studies
2 other study(ies) available for ro3244794 and Inflammation
Article | Year |
---|---|
Induction of prostacyclin by steady laminar shear stress suppresses tumor necrosis factor-alpha biosynthesis via heme oxygenase-1 in human endothelial cells.
Cyclooxygenase (COX)-2 is among the endothelial genes upregulated by uniform laminar shear stress (LSS), characteristically associated with atherosclerotic lesion-protected areas. We have addressed whether the induction of COX-2-dependent prostanoids in endothelial cells by LSS plays a role in restraining endothelial tumor necrosis factor (TNF)-alpha generation, a proatherogenic cytokine, through the induction of heme oxygenase-1 (HO)-1, an antioxidant enzyme. In human umbilical vein endothelial cells (HUVECs) exposed to steady LSS of 10 dyn/cm(2) for 6 hours, COX-2 protein was significantly induced, whereas COX-1 and the downstream synthases were not significantly modulated. This was associated with significant (P<0.05) increase of 6-keto-prostaglandin (PG)F(1alpha) (the hydrolysis product of prostacyclin), PGE(2), and PGD(2). In contrast, TNF-alpha released in the medium in 6 hours (3633+/-882 pg) or detected in cells lysates (1091+/-270 pg) was significantly (P<0.05) reduced versus static condition (9100+/-2158 and 2208+/-300 pg, respectively). Coincident induction of HO-1 was detected. The finding that LSS-dependent reduction of TNF-alpha generation and HO-1 induction were abrogated by the selective inhibitor of COX-2 NS-398, the nonselective COX inhibitor aspirin, or the specific prostacyclin receptor (IP) antagonist RO3244794 illuminates the central role played by LSS-induced COX-2-dependent prostacyclin in restraining endothelial inflammation. Carbacyclin, an agonist of IP, induced HO-1. Similarly to inhibition of prostacyclin biosynthesis or activity, the novel imidazole-based HO-1 inhibitor QC15 reversed TNF-alpha reduction by LSS. These findings suggest that inhibition of COX-2-dependent prostacyclin might contribute to acceleration of atherogenesis in patients taking traditional nonsteroidal antiinflammatory drugs (NSAIDs) and NSAIDs selective for COX-2 through downregulation of HO-1, which halts TNF-alpha generation in human endothelial cells. Topics: 6-Ketoprostaglandin F1 alpha; Aspirin; Atherosclerosis; Benzofurans; Cells, Cultured; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Dinoprost; Dinoprostone; Down-Regulation; Endothelial Cells; Epoprostenol; Heme Oxygenase-1; Humans; Inflammation; Nitrobenzenes; Perfusion; Propionates; Prostaglandin D2; Receptors, Epoprostenol; Receptors, Prostaglandin; Stress, Mechanical; Sulfonamides; Tumor Necrosis Factor-alpha; Up-Regulation | 2009 |
Effects of cyclooxygenase inhibition on canine coronary artery blood flow and thrombosis.
This study was designed to determine the effect of inhibitors of cyclooxygenase (COX)-1, COX-2, and the nonselective COX inhibitor naproxen on coronary vasoactivity and thrombogenicity under baseline and lipopolysaccharide (LPS)-induced inflammatory conditions. We hypothesize that endothelial COX-1 is the primary COX isoform in the canine normal coronary artery, which mediates arachidonic acid (AA)-induced vasodilatation. However, COX-2 can be induced and overexpressed by inflammatory mediators and becomes the major local COX isoform responsible for the production of antithrombotic prostaglandins during systemic inflammation. The interventions included the selective COX-1 inhibitor SC-560 (0.3 mg/kg iv), the selective COX-2 inhibitor nimesulide (5 mg/kg iv), or the nonselective COX inhibitor naproxen (3 mg/kg iv). The selective prostacyclin (IP) receptor antagonist RO-3244794 (RO) was used as an investigational tool to delineate the role of prostacyclin (PGI(2)) in modulating vascular reactivity. AA-induced vasodilatation of the left circumflex coronary artery was suppressed to a similar extent by each of the COX inhibitors and RO. The data suggest that AA-induced vasodilatation in the normal coronary artery is mediated by a single COX isoform, the constitutive endothelial COX-1, which is reported to be susceptible to COX-2 inhibitors. The effect of the COX inhibitors on thrombus formation was evaluated in a model of carotid artery thrombosis secondary to electrolytic-induced vessel wall injury. Pretreatment with LPS (0.5 mg/kg iv) induced a systemic inflammatory response and prolonged the time-to-occlusive thrombus formation, which was reduced in the LPS-treated animals by the administration of nimesulide. In contrast, neither SC-560 nor naproxen influenced the time to thrombosis in the animals pretreated with LPS. The data are of significance in view of reported adverse cardiovascular events observed in clinical trials involving the use of selective COX-2 inhibitors, thereby suggesting that the endothelial constitutive COX-1 and the inducible vascular COX-2 serve important functions in maintaining vascular homeostasis. Topics: Acetylcholine; Animals; Arachidonic Acid; Benzofurans; Carotid Arteries; Coronary Circulation; Coronary Vessels; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Electric Stimulation; Epoprostenol; Inflammation; Ligation; Lipopolysaccharides; Naproxen; Platelet Aggregation; Propionates; Pyrazoles; Receptors, Epoprostenol; Sulfonamides; Thrombosis; Time Factors; Vasodilation; Vasodilator Agents | 2008 |