ro-25-6981 has been researched along with Inflammation* in 3 studies
3 other study(ies) available for ro-25-6981 and Inflammation
Article | Year |
---|---|
Reduction of inflammatory pain in female rats after NR2B NMDA cortical antagonism.
Studies have shown that N-methyl-D-aspartate (NMDA) receptors play a critical role in pain processing at different levels of the central nervous system. In this study, we used female adult Wistar rats to examine the effects of antagonizing the NR2B subunit of the NMDA receptor in phasic and tonic pain processes. All the rats underwent stereotaxic surgery for cortical cannula implantation and after at least one week of recovery, rats performed behavioral tests. For evaluating the effects of drugs on motor coordination rats were tested in the rotarod apparatus. Moreover, rats were evaluated in the paw withdrawal latency (PWL) to a noxious thermal stimulus. Furthermore, rats were tested in the formalin-pain test. Rats that received the NR2B antagonist Ro 25-6981 before and after formalin injection showed significantly reduced pain responses in the formalin test, as compared with female control rats (p<0.05). In contrast, no differences among groups were found in the phasic pain test (Hargreaves) and the rotarod test. Taken together, these results suggest that cortical antagonism of the NR2B subunit of NMDA receptors is able to reduce inflammatory pain levels not only before, but after the formalin injection in females at different phases of the estrous cycle. Topics: Animals; Drug Evaluation, Preclinical; Estrous Cycle; Excitatory Amino Acid Antagonists; Female; Formaldehyde; Gyrus Cinguli; Hot Temperature; Inflammation; Injections; Long-Term Potentiation; Pain; Pain Measurement; Phenols; Piperidines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Rotarod Performance Test | 2012 |
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening. Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature | 2010 |
A role of periaqueductal grey NR2B-containing NMDA receptor in mediating persistent inflammatory pain.
The midbrain periaqueductal grey (PAG) is a structure known for its roles in pain transmission and modulation. Noxious stimuli potentiate the glutamate synaptic transmission and enhance glutamate NMDA receptor expression in the PAG. However, little is known about roles of NMDA receptor subunits in the PAG in processing the persistent inflammatory pain. The present study was undertaken to investigate NR2A- and NR2B-containing NMDA receptors in the PAG and their modulation to the peripheral painful inflammation. Noxious stimuli induced by hind-paw injection of complete Freund's adjuvant (CFA) caused up-regulation of NR2B-containing NMDA receptors in the PAG, while NR2A-containing NMDA receptors were not altered. Whole-cell patch-clamp recordings revealed that NMDA receptor mediated mEPSCs were increased significantly in the PAG synapse during the chronic phases of inflammatory pain in mice. PAG local infusion of Ro 25-6981, an NR2B antagonist, notably prolonged the paw withdrawal latency to thermal radian heat stimuli bilaterally in rats. Hyperoside (Hyp), one of the flavonoids compound isolated from Rhododendron ponticum L., significantly reversed up-regulation of NR2B-containing NMDA receptors in the PAG and exhibited analgesic activities against persistent inflammatory stimuli in mice. Our findings provide strong evidence that up-regulation of NR2B-containing NMDA receptors in the PAG involves in the modulation to the peripheral persistent inflammatory pain. Topics: Afferent Pathways; Animals; Anti-Inflammatory Agents, Non-Steroidal; Chronic Disease; Disease Models, Animal; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Freund's Adjuvant; Glutamic Acid; Inflammation; Male; Mice; Mice, Inbred C57BL; Nociceptors; Organ Culture Techniques; Pain Measurement; Pain, Intractable; Patch-Clamp Techniques; Periaqueductal Gray; Phenols; Piperidines; Quercetin; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission; Up-Regulation | 2009 |