ro-25-6981 has been researched along with Facial-Pain* in 2 studies
2 other study(ies) available for ro-25-6981 and Facial-Pain
Article | Year |
---|---|
Peripheral administration of NR2 antagonists attenuates orofacial formalin-induced nociceptive behavior in rats.
The present study investigated the role of the peripheral NR2 subunits of N-methyl-d-aspartatic acid (NMDA) receptors in inflammatory orofacial pain. Experiments were carried out using adult male Sprague-Dawley rats weighing 220 to 280 g. Formalin (5%, 50 μl) was applied subcutaneously to the vibrissa pad. For each animal, the number of noxious behavioral responses, including rubbing or scratching of the facial region proximal to the injection site, was recorded for 9 sequential 5 min intervals. NR2 subunit antagonists were injected subcutaneously at 20 min prior to formalin injection. The subcutaneous injection of 100 or 200 μg of memantine significantly suppressed the number of scratches in the second phase of the behavioral responses to formalin. The subcutaneous injection of 0.25, 2.5, or 25 μg of 5,7-dichlorokynurenic acid also produced significant antinociceptive effects in the second phase. The subcutaneous injection of AP-5 at high dose produced significant antinociceptive effects in the second phase. The subcutaneous injection of PPPA and Ro 25-6981 both significantly suppressed the number of scratches in the second phase. The antinociceptive doses of memantine (200 μg), 5,7-dichlorokynurenic acid (25 μg), AP-5 (20 μg), PPPA (2.5 μg), or Ro 25-6981 (50 μg) injected into the contralateral hind paw did not affect the number of scratches in both the first and second phases. Moreover, the peripheral administration of NR2 subunit antagonists, including other NMDA receptor blockers, did not produce any motor dysfunction. These results indicate that a targeted blockade of peripheral NR2 receptors is a potentially important new method of treating inflammatory pain in the orofacial area. Topics: Animals; Behavior, Animal; Excitatory Amino Acid Antagonists; Facial Pain; Injections; Kynurenic Acid; Male; Memantine; Pain Measurement; Phenols; Piperidines; Postural Balance; Rats; Rats, Sprague-Dawley; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Vibrissae | 2011 |
Intracisternal administration of NR2 antagonists attenuates facial formalin-induced nociceptive behavior in rats.
To examine the antinociceptive effects of N-Methyl-D-aspartate (NMDA) receptor NR2 subunit antagonists in a rat model of the facial formalin test.. Experiments were carried out on adult male Sprague-Dawley rats weighing 220 to 280 g. Anesthetized rats were individually mounted on a stereotaxic frame and a polyethylene tube was implanted for intracisternal injection and, 72 hours later, formalin tests were performed. NMDA receptor antagonists were administered intracisternally 10 minutes prior to subcutaneous injection of 5% formalin (50 MicroL) into the vibrissal pad.. The intracisternal administration of 25, 50, or 100 Microg of memantine, an antagonist that acts at the NMDA ion channel site, significantly suppressed the number of scratches in the second phase of the behavioral responses to formalin. Intracisternal administration of a range of doses of 5,7-dichlorokynurenic acid, a glycine site antagonist, or DL-2-amino-5-phosphonopentanoate (AP-5), a nonselective NMDA site antagonist, produced significant antinociceptive effects in the second phase. Intracisternal administration of 1, 2.5, or 5 Microg of (2R,4S)-4-(3 Phosphonopropyl)-2-piperidine_carboxylic acid (PPPA), a competitive NR2A antagonist, significantly suppressed the number of scratches in the second phase, while only the highest dose of PPPA (5 Microg) significantly suppressed the number of scratches in the first phase. The antinociceptive effects of intracisternal injection of (alphaR, betaS)-alpha-(4Hydroxyphenyl)-_ methyl-4-(phenylmethyl)-1-Piperidinepropanol maleate(Ro 25-6981), a selective NR2B antagonist, were similar to those of PPPA. Injection of memantine, AP-5, Ro 25-6981, or vehicle did not result in any motor dysfunction. A low dose of PPPA (1 microg) or 5,7-dichlorokynurenic acid (2.5 microg) did not affect motor function. However, higher doses of PPPA and 5,7-dichlorokynurenic acid produced motor dysfunction.. The present results suggest that central NR2 subunits play an important role in orofacial nociceptive transmission. Moreover, this data also indicate that targeted inhibition of the NMDA receptor NR2 subunit is a potentially important new treatment approach for inflammatory pain originating in the orofacial area. Topics: Animals; Behavior, Animal; Cisterna Magna; Disease Models, Animal; Excitatory Amino Acid Antagonists; Facial Pain; Formaldehyde; Injections; Injections, Subcutaneous; Kynurenic Acid; Male; Memantine; Motor Activity; Nociceptors; Phenols; Piperazines; Piperidines; Pruritus; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission; Time Factors; Vibrissae | 2010 |