ro-13-6307 has been researched along with Neuroblastoma* in 2 studies
2 other study(ies) available for ro-13-6307 and Neuroblastoma
Article | Year |
---|---|
The synthetic retinoid RO 13-6307 induces neuroblastoma differentiation in vitro and inhibits neuroblastoma tumour growth in vivo.
Retinoids modulate cell proliferation, differentiation and apoptosis in a variety of tumour cells including leukaemia and neuroblastoma, a childhood tumour of the sympathetic nervous system. 13-cis retinoic acid is in clinical use against minimal residual disease in neuroblastoma, where the effect seems to depend on dose, scheduling and tumour mass. Novel retinoids are searched for, to improve potency and lower toxicity. We investigated the effect of the synthetic retinoid Ro 13-6307 on neuroblastoma growth in vitro on SK-N-BE(2) and SH-SY5Y cells. Furthermore, effects on tumour growth and the toxicity profile were investigated in a rat xenograft model. Effects of Ro 13-6307 were compared to 13-cis RA (retinoic acid) in vitro and in vivo. Neuroblastoma cells treated with 1 microM Ro 13-6307 exhibited neuronal differentiation, decreased proliferation and accumulation of cells in G1 phase in at least the same magnitude as 5 microM 13-cis RA. No apoptosis was detected in vitro. Treatment of nude rats with neuroblastoma using Ro 13-6307, 0.12 mg p.o. daily, decreased neuroblastoma growth in vivo, in terms of tumour volume during treatment and tumour weight at sacrifice (p < 0.05). In contrast, Ro 13-6307, 0.08 mg p.o. daily, resulted in no significant reduction in tumour growth. All rats treated with Ro 13-6307 gained less weight than control rats, but they exhibited no other signs of toxicity. The toxicity profile of Ro 13-6307 was similar to what we found with 13-cis RA. Our preclinical results suggest that Ro 13-6307 may be a candidate retinoid for clinical oral therapy of neuroblastoma in children. Topics: Animals; Antineoplastic Agents; Cell Cycle; Cell Differentiation; Cell Division; Fatty Acids, Unsaturated; Humans; Isotretinoin; Male; Neuroblastoma; Rats; Tumor Cells, Cultured | 2003 |
The vitamin A analogues: 13-cis retinoic acid, 9-cis retinoic acid, and Ro 13-6307 inhibit neuroblastoma tumour growth in vivo.
Neuroblastoma, a childhood tumour of the sympathetic nervous system, may undergo spontaneous differentiation or regression due to apoptosis after no or minimal therapy. However, the majority of neuroblastomas are diagnosed as metastatic tumours with a poor prognosis in spite of intensive multimodal therapy. Vitamin A and its analogues (retinoic acid, RA) play an important role in normal cel lular differentiation and programmed cell death. RA regulates neuroblastoma growth and differentiation in vitro, and has shown activity against human neuroblastoma in vivo.. Recently, 9-cis RA was shown to induce apoptosis in vitro in neuroblastoma using a 5 days short-term treatment and subsequent washout. In the present study, nude rats with human neuroblastoma SH-SY5Y xenografts were treated with 13-cis RA (4 mg po daily), 9-cis RA (5 mg po daily) or the novel analogue Ro 13-6307 (0.3 mg po daily) using either a continuous or short-term schedule.. ALL three different retinoids decreased neuroblastoma growth significantly in terms of tumour weight after 8-12 days when compared to untreated controls (P < 0.05). Minor signs of toxicity in 13-cis RA treated rats were observed. However, severe toxicity with significant weight loss was seen in all rats treated with 9-cis RA and Ro 13-6307. Toxicity was more pronounced with the continuous regimen.. We conclude that different retinoids reduce neuroblastoma tumour growth in vivo. Drug scheduling and dosage may affect both therapeutic efficacy and toxic side effects. Further in vivo studies are warranted, including pharmacokinetic and molecular analyses, before clinical trials with promising retinoids like 9-cis RA and Ro 13-6307 can be started in children with neuroblastoma. Topics: Alitretinoin; Animals; Antineoplastic Agents; Body Weight; Cell Differentiation; Cell Division; Diarrhea; Drug Administration Schedule; Fatty Acids, Unsaturated; Female; Humans; Isotretinoin; Male; Mice; Neoplasm Transplantation; Neuroblastoma; Rats; Rats, Nude; Tretinoin; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2001 |