rivaroxaban and Neointima

rivaroxaban has been researched along with Neointima* in 2 studies

Other Studies

2 other study(ies) available for rivaroxaban and Neointima

ArticleYear
Delivery of rivaroxaban and chitosan rapamycin microparticle with dual antithrombosis and antiproliferation functions inhibits venous neointimal hyperplasia.
    Drug delivery, 2022, Volume: 29, Issue:1

    Neointimal hyperplasia is a complex process after vascular interventions, acute platelet deposition and smooth muscle cell proliferation both contributed to this process. There are still no perfect solutions to solve this problem. Rivaroxaban is a novel anticoagulant that has been widely used in clinic, it has a good pharmacological effects both in vivo and in vitro. Chitosan microparticle rapamycin (MP-rapa) was fabricated, interspaces of polyglycolic acid (PGA) scaffold were used as a reservoir of MP-rapa, and the scaffold was coated with hyaluronic acid rivaroxaban (MP-rapa-riva). Scanning electronic microscopy (SEM) photographs were taken and water contact angles were measured, rat inferior vena cava (IVC) patch venoplasty model was used; patches were harvested at day 14 and examined by immunohistochemistry and immunofluorescence. SEM photographs showed the microparticles rapamycin were inside the interspace of the scaffold, hyaluronic acid rivaroxaban was also successfully coated onto the surface of the scaffold. There was a thinner neointima, fewer proliferating cell nuclear antigen (PCNA) positive cells, fewer macrophages in the MP-rapa and MP-rapa-riva grafts compared to the control PGA graft. The result showed that this scaffold with dual anticoagulation and antiproliferation functions can effectively inhibit venous neointimal hyperplasia, although this is an animal experiment, it showed promising potential clinical application in the future.

    Topics: Animals; Chitosan; Hyaluronic Acid; Hyperplasia; Neointima; Rats; Rivaroxaban; Sirolimus; Tunica Intima

2022
Inhibition of activated factor X by rivaroxaban attenuates neointima formation after wire-mediated vascular injury.
    European journal of pharmacology, 2018, Feb-05, Volume: 820

    Accumulating evidence suggests that activated factor X (FXa), a key coagulation factor, plays an important role in the development of vascular inflammation through activation of many cell types. Here, we investigated whether pharmacological blockade of FXa attenuates neointima formation after wire-mediated vascular injury. Transluminal femoral artery injury was induced in C57BL/6 mice by inserting a straight wire. Rivaroxaban (5mg/kg/day), a direct FXa inhibitor, was administered from one week before surgery until killed. At four weeks after surgery, rivaroxaban significantly attenuated neointima formation in the injured arteries compared with control (P<0.01). Plasma lipid levels and blood pressure were similar between the rivaroxaban-treated group and non-treated group. Quantitative RT-PCR analyses demonstrated that rivaroxaban reduced the expression of inflammatory molecules (e.g., IL-1β and TNF-α) in injured arteries at seven days after surgery (P<0.05, respectively). In vitro experiments using mouse peritoneal macrophages demonstrated that FXa increased the expression of inflammatory molecules (e.g., IL-1β and TNF-α), which was blocked in the presence of rivaroxaban (P<0.05). Also, in vitro experiments using rat vascular smooth muscle cells (VSMC) demonstrated that FXa promoted both proliferation and migration of this cell type (P<0.05), which were blocked in the presence of rivaroxaban. Inhibition of FXa by rivaroxaban attenuates neointima formation after wire-mediated vascular injury through inhibition of inflammatory activation of macrophages and VSMC.

    Topics: Animals; Factor Xa; Factor Xa Inhibitors; Gene Expression Regulation; Hyperplasia; Macrophages; Male; Mice; Mice, Inbred C57BL; Neointima; Rivaroxaban; Signal Transduction; Vascular System Injuries

2018