ritonavir has been researched along with Neoplasms* in 23 studies
3 review(s) available for ritonavir and Neoplasms
Article | Year |
---|---|
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
Anti-HIV drugs for cancer therapeutics: back to the future?
The use of anti-HIV drugs as cancer treatments is not new. Azidothymidine was studied as an antineoplastic in the 1990s, but despite promising in vitro data, clinical trials showed little antitumour activity. HIV protease inhibitors were developed in the early 1990s, and their subsequent incorporation into highly active antiretroviral therapy (HAART) has profoundly changed the natural history of HIV infection. The potential antitumour properties of these drugs have been investigated because of their success in treating HIV-related Kaposi's sarcoma. HAART's effects on Kaposi's sarcoma did not always correlate with immune reconstitution, and activity against other solid and haematological malignancies has been established. Inhibition of tumour-cell invasion and angiogenesis were properties first ascribed to inhibition of HIV protease; however, they have pleiotropic antitumour effects, including inhibition of inflammatory cytokine production, proteasome activity, cell proliferation and survival, and induction of apoptosis. HIV protease inhibitors are thus a new class of anticancer drugs with multiple effects, and other anti-HIV drugs might hold similar promise. Topics: Anti-HIV Agents; Antiretroviral Therapy, Highly Active; Cidofovir; Cytosine; HIV Protease Inhibitors; Humans; Indinavir; Nelfinavir; Neoplasms; Organophosphonates; Receptors, CXCR4; Reverse Transcriptase Inhibitors; Ritonavir; Saquinavir; Zidovudine | 2009 |
[Protease inhibitors--a class of substances ready to take off].
Topics: Anti-HIV Agents; Cell Transformation, Neoplastic; HIV Protease Inhibitors; Humans; Indinavir; Neoplasms; Rheumatic Diseases; Ritonavir; Saquinavir | 1997 |
8 trial(s) available for ritonavir and Neoplasms
Article | Year |
---|---|
A Phase 1 Dose-Escalation Study of Low-Dose Metronomic Treatment With Novel Oral Paclitaxel Formulations in Combination With Ritonavir in Patients With Advanced Solid Tumors.
ModraPac001 (MP1) and ModraPac005 (MP5) are novel oral paclitaxel formulations that are coadministered with the cytochrome P450 3A4 inhibitor ritonavir (r), enabling daily low-dose metronomic (LDM) treatment. The primary aim of this study was to determine the safety, pharmacokinetics and maximum tolerated dose (MTD) of MP1/r and MP5/r. The second aim was to establish the recommended phase 2 dose (RP2D) as LDM treatment. This was an open-label phase 1 trial. Patients with advanced solid tumors were enrolled according to a classical 3+3 design. After initial employment of the MP1 capsule, the MP5 tablet was introduced. Safety was assessed using the Common Terminology Criteria for Adverse Events version 4.02. Pharmacokinetic sampling was performed on days 1, 2, 8, and 22 for determination of paclitaxel and ritonavir plasma concentrations. In this study, 37 patients were treated with up to twice-daily 30-mg paclitaxel combined with twice-daily 100-mg ritonavir (MP5/r 30-30/100-100) in 9 dose levels. Dose-limiting toxicities were nausea, (febrile) neutropenia, dehydration and vomiting. At the MTD/RP2D of MP5/r 20-20/100-100, the maximum paclitaxel plasma concentration and area under the concentration-time curve until 24 hours were 34.6 ng/mL (coefficient of variation, 79%) and 255 ng • h/mL (coefficient of variation, 62%), respectively. Stable disease was observed as best response in 15 of 31 evaluable patients. Based on these results, LDM therapy with oral paclitaxel coadministrated with ritonavir was considered feasible and safe. The MTD and RP2D were determined as MP5/r 20-20/100-100. Further clinical development of MP5/r as an LDM concept, including potential combination treatment, is warranted. Topics: Administration, Oral; Aged; Antineoplastic Combined Chemotherapy Protocols; Area Under Curve; Dose-Response Relationship, Drug; Drug Administration Schedule; Female; Humans; Male; Maximum Tolerated Dose; Middle Aged; Neoplasms; Paclitaxel; Ritonavir | 2021 |
Effect of Food on the Pharmacokinetics of the Oral Docetaxel Tablet Formulation ModraDoc006 Combined with Ritonavir (ModraDoc006/r) in Patients with Advanced Solid Tumours.
ModraDoc006 is a novel docetaxel tablet formulation that is co-administrated with the cytochrome P450 3A4 and P-glycoprotein inhibitor ritonavir (r): ModraDoc006/r.. This study evaluated the effect of food consumed prior to administration of ModraDoc006/r on the pharmacokinetics of docetaxel and ritonavir.. Patients with advanced solid tumours were enrolled in this randomized crossover study to receive ModraDoc006/r in a fasted state in week 1 and after a standardized high-fat meal in week 2 and vice versa. Pharmacokinetic sampling was conducted until 48 h after both study drug administrations. Docetaxel and ritonavir plasma concentrations were determined using liquid chromatography with tandem mass spectrometry. Safety was evaluated with the Common Terminology Criteria for Adverse Events, version 4.03.. In total, 16 patients completed the food-effect study. The geometric mean ratio (GMR) for the docetaxel area under the plasma concentration-time curve (AUC). The docetaxel and ritonavir exposure were not bioequivalent, as consumption of a high-fat meal prior to administration of ModraDoc006/r resulted in a slightly higher docetaxel exposure and lower ritonavir C. NCT03147378, date of registration: May 10 2017. Topics: Administration, Oral; Aged; Antineoplastic Agents; Area Under Curve; Cross-Over Studies; Cytochrome P-450 CYP3A Inhibitors; Diarrhea; Diet, High-Fat; Docetaxel; Drug Combinations; Fasting; Fatigue; Female; Food-Drug Interactions; Humans; Hypokalemia; Male; Middle Aged; Neoplasms; Ritonavir; Tablets; Therapeutic Equivalency | 2021 |
A Randomized Clinical Trial of the Efficacy and Safety of Interferon β-1a in Treatment of Severe COVID-19.
To the best of our knowledge, there is no published study on the use of interferon β-1a (IFN β-1a) in the treatment of severe COVID-19. In this randomized clinical trial, the efficacy and safety of IFN β-1a were evaluated in patients with severe COVID-19. Forty-two patients in the interferon group received IFN β-1a in addition to the national protocol medications (hydroxychloroquine plus lopinavir-ritonavir or atazanavir-ritonavir). Each 44-μg/ml (12 million IU/ml) dose of interferon β-1a was subcutaneously injected three times weekly for two consecutive weeks. The control group consisted of 39 patients who received only the national protocol medications. The primary outcome of the study was time to reach clinical response. Secondary outcomes were duration of hospital stay, length of intensive care unit stay, 28-day mortality, effect of early or late administration of IFN on mortality, adverse effects, and complications during the hospitalization. Between 29 February and 3 April 2020, 92 patients were recruited, and a total of 42 patients in the IFN group and 39 patients in the control group completed the study. As the primary outcome, time to the clinical response was not significantly different between the IFN and the control groups (9.7 ± 5.8 versus 8.3 ± 4.9 days, respectively, Topics: Adult; Aged; Antiviral Agents; Atazanavir Sulfate; Betacoronavirus; Cardiovascular Diseases; Comorbidity; Coronavirus Infections; COVID-19; Diabetes Mellitus; Drug Administration Schedule; Drug Combinations; Drug Therapy, Combination; Dyslipidemias; Female; Humans; Hydroxychloroquine; Intensive Care Units; Interferon beta-1a; Length of Stay; Lopinavir; Male; Middle Aged; Neoplasms; Pandemics; Patient Safety; Pneumonia, Viral; Ritonavir; SARS-CoV-2; Survival Analysis; Treatment Outcome | 2020 |
A dose-escalation study of bi-daily once weekly oral docetaxel either as ModraDoc001 or ModraDoc006 combined with ritonavir.
Two solid dispersions of docetaxel (denoted ModraDoc001 capsule and ModraDoc006 tablet (both 10 mg)) were co-administered with 100 mg ritonavir (/r) and investigated in a bi-daily once weekly (BIDW) schedule. Safety, maximum tolerated dose (MTD), pharmacokinetics (PK) and preliminary activity were explored.. Adult patients with metastatic solid tumours were included in two dose-escalation arms. PK sampling was performed during the first week and the second or third week. Safety was evaluated using US National Cancer Institute's Common Terminology Criteria for Adverse Events (NCI-CTCAE) version 3.0. Antitumour activity was assessed every 6 weeks according to Response Evaluation Criteria in Solid Tumours (RECIST) version 1.0.. Oral administration of BIDW ModraDoc001/r or ModraDoc006/r is feasible. The once weekly 30/20 mg ModraDoc006 tablet/r dose-level was selected for future clinical development. Antitumour activity is promising. Topics: Administration, Oral; Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Area Under Curve; Capsules; Docetaxel; Drug Administration Schedule; Drug Compounding; Drug Dosage Calculations; Female; Half-Life; Humans; Male; Maximum Tolerated Dose; Metabolic Clearance Rate; Middle Aged; Neoplasms; Netherlands; Ritonavir; Tablets; Taxoids; Treatment Outcome | 2017 |
Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised. Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus | 2016 |
A phase 1/pharmacokinetic study of sunitinib in combination with highly active antiretroviral therapy in human immunodeficiency virus-positive patients with cancer: AIDS Malignancy Consortium trial AMC 061.
The treatment of non-acquired immunodeficiency syndrome-defining cancers may be complicated by drug interactions between highly active antiretroviral therapy (HAART) and chemotherapy. This trial is the first by the AIDS Malignancy Consortium to assess targeted therapies and HAART in human immunodeficiency virus-positive patients (ClinicalTrials.gov identifier: NCT00890747).. In a modified phase 1 study of sunitinib, patients were stratified into 2 treatment arms based on whether they were receiving therapy with ritonavir, a potent CYP3A4 inhibitor. Patients in treatment arm 1 (non-ritonavir HAART) received standard sunitinib dosing (50 mg/day). Treatment arm 2 (ritonavir-based HAART) used a phase 1, 3 + 3 dose escalation design (from 25 mg/day to 50 mg/day). Cycles were comprised of 4 weeks on treatment followed by a 2-week break (6 weeks total). The pharmacokinetics of sunitinib and its active metabolite (N-desethyl sunitinib) were assessed.. Nineteen patients were enrolled and were evaluable. Patients on treatment arm 1 tolerated treatment with no dose-limiting toxicity observed. In treatment arm 2, a dose-limiting toxicity was experienced at a dose of 37.5 mg, and an additional 3 of 5 patients experienced grade 3 neutropenia (toxicity graded as per National Cancer Institute Common Terminology Criteria for Adverse Events [version 4.0]), an uncommon toxicity of sunitinib. No patient achieved a response, but 10 patients had stable disease, including 8 with prolonged disease stability. Efavirenz, a potent inducer of CYP3A4, resulted in increased exposure of N-desethyl sunitinib, whereas ritonavir caused decreased exposure of the metabolite. Hand-foot syndrome was associated with higher steady-state trough concentrations of sunitinib.. Patients receiving non-ritonavir-based HAART regimens tolerated standard dosing of sunitinib. Patients receiving ritonavir-based therapy who were treated with a dose of 37.5 mg/day experienced higher toxicities. Dose reductions of sunitinib to 37.5 mg may be warranted in patients receiving ritonavir. Topics: Adult; Aged; Angiogenesis Inhibitors; Antineoplastic Agents; Antiretroviral Therapy, Highly Active; Drug Interactions; Female; HIV Infections; Humans; Indoles; Male; Middle Aged; Neoplasms; Pyrroles; Ritonavir; Sunitinib | 2014 |
Population pharmacokinetics of intravenously and orally administered docetaxel with or without co-administration of ritonavir in patients with advanced cancer.
Docetaxel has a low oral bioavailability due to affinity for P-glycoprotein and cytochrome P450 (CYP) 3A4 enzymes. Inhibition of the CYP3A4 enzymes by ritonavir resulted in increased oral bioavailability. The aim of this study was to develop a population pharmacokinetic (PK) model and to evaluate and quantify the influence of ritonavir on the PK of docetaxel.. Data from two clinical trials were included in the data analysis, in which docetaxel (75 mg m(-2) or 100 mg) had been administered intravenously or orally (10 mg or 100 mg) with or without co-administration of oral ritonavir (100 mg). Population modelling was performed using non-linear mixed effects modelling. A three-compartment model was used to describe the i.v. data. PK data after oral administration, with or without co-administration of ritonavir, were incorporated into the model.. Gut bioavailability of docetaxel increased approximately two-fold from 19 to 39% (CV 13%) with ritonavir co-administration. The hepatic extraction ratio and the elimination rate of docetaxel were best described by estimating the intrinsic clearance. Ritonavir was found to inhibit in a concentration dependent manner the intrinsic clearance of docetaxel, which was described by an inhibition constant of 0.028 microg ml(-1) (CV 36%). A maximum inhibition of docetaxel clearance of more then 90% was reached.. A PK model describing both the PK of orally and intravenously administered docetaxel in combination with ritonavir, was successfully developed. Co-administration of ritonavir lead to increased oral absorption and reduced elimination rate of docetaxel. Topics: Administration, Oral; Adult; Aged; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Availability; Cytochrome P-450 CYP3A Inhibitors; Docetaxel; Enzyme Inhibitors; Female; Humans; Infusions, Intravenous; Male; Middle Aged; Neoplasms; Ritonavir; Taxoids | 2010 |
Coadministration of ritonavir strongly enhances the apparent oral bioavailability of docetaxel in patients with solid tumors.
To enhance the systemic exposure to oral docetaxel by coadministration of ritonavir, an efficacious inhibitor of CYP 3A4 with minor P-glycoprotein inhibiting effects, in patients with cancer.. A proof-of-concept study was carried out in 12 patients with solid tumors. The first cohort of patients (n = 4) received 10 mg and the subsequent cohort (n = 8) 100 mg of oral docetaxel, coadministered with 100 mg oral ritonavir randomized simultaneously or ritonavir given 60 minutes before docetaxel on days 1 and 8. On day 15 or 22, patients received 100 mg i.v. docetaxel.. The area under the plasma concentration-time curve in patients who received 10 mg oral docetaxel in combination with ritonavir was low, and the dose could safely be increased to 100 mg. The area under the plasma concentration-time curve in patients who received 100 mg oral docetaxel combined with ritonavir simultaneously or ritonavir given 60 minutes before docetaxel was 2.4 +/- 1.5 and 2.8 +/- 1.4 mg/h/L, respectively, compared with 1.9 +/- 0.4 mg/h/L after i.v. docetaxel. The apparent oral bioavailability of docetaxel combined with ritonavir simultaneously or ritonavir given 60 minutes before docetaxel was 131% +/- 90% and 161% +/- 91%, respectively. The oral combination of docetaxel and ritonavir was well tolerated.. Coadministration of ritonavir significantly enhanced the apparent oral bioavailability of docetaxel. These data are promising and form the basis for further development of a clinically applicable oral formulation of docetaxel combined with ritonavir. Topics: Administration, Oral; Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Availability; Cohort Studies; Cytochrome P-450 CYP3A; Cytochrome P-450 CYP3A Inhibitors; Docetaxel; Female; Humans; Male; Middle Aged; Neoplasms; Ritonavir; Taxoids | 2009 |
13 other study(ies) available for ritonavir and Neoplasms
Article | Year |
---|---|
Understanding the Risk of Drug Interactions Between Ritonavir-Containing COVID-19 Therapies and Small-Molecule Kinase Inhibitors in Patients With Cancer.
The introduction of COVID-19 therapies containing ritonavir has markedly expanded the scope of use for this medicine. As a strong cytochrome P450 3A4 inhibitor, the use of ritonavir is associated with a high drug interaction risk. There are currently no data to inform clinician regarding the likely magnitude and duration of interaction between ritonavir-containing COVID-19 therapies and small-molecule kinase inhibitors (KIs) in patients with cancer.. Physiologically based pharmacokinetic modeling was used to conduct virtual clinical trials with a parallel group study design in the presence and absence of ritonavir (100 mg twice daily for 5 days). The magnitude and time course of changes in KI exposure when coadministered with ritonavir was evaluated as the primary outcome.. Dosing of ritonavir resulted in a > 2-fold increase in steady-state area under the plasma concentration-time curve and maximal concentration for six of the 10 KIs. When the KI was coadministered with ritonavir, dose reductions to between 10% and 75% of the original dose were required to achieve an area under the plasma concentration-time curve within 1.25-fold of the value in the absence of ritonavir.. To our knowledge, this study provides the first data to assist clinicians' understanding of the drug interaction risk associated with administering ritonavir-containing COVID-19 therapies to patients with cancer who are currently being treated with KIs. These data may support clinicians to make more informed dosing decisions for patients with cancer undergoing treatment with KIs who require treatment with ritonavir-containing COVID-19 antiviral therapies. Topics: COVID-19; COVID-19 Drug Treatment; Drug Interactions; HIV Protease Inhibitors; Humans; Neoplasms; Ritonavir | 2023 |
Simultaneous Delivery of Doxorubicin and Protease Inhibitor Derivative to Solid Tumors via Star-Shaped Polymer Nanomedicines Overcomes P-gp- and STAT3-Mediated Chemoresistance.
The derivative of protease inhibitor ritonavir (5-methyl-4-oxohexanoic acid ritonavir ester; RD) was recently recognized as a potent P-gp inhibitor and cancerostatic drug inhibiting the proteasome and STAT3 signaling. Therefore, we designed high-molecular-weight HPMA copolymer conjugates with a PAMAM dendrimer core bearing both doxorubicin (Dox) and RD (Star-RD + Dox) to increase the circulation half-life to maximize simultaneous delivery of Dox and RD into the tumor. Star-RD inhibited P-gp activity, potently sensitizing both low- and high-P-gp-expressing cancer cells to the cytostatic and proapoptotic activity of Dox in vitro. Star-RD + Dox possessed higher cytostatic and proapoptotic activities compared to Star-Dox and the equivalent mixture of Star-Dox and Star-RD in vitro. Star-RD + Dox efficiently inhibited STAT3 signaling and induced caspase-3 activation and DNA fragmentation in cancer cells in vivo. Importantly, Star-RD + Dox was found to have superior antitumor activity in terms of tumor growth inhibition and increased survival of mice bearing P-gp-expressing tumors. Topics: Animals; Cytostatic Agents; Doxorubicin; Drug Resistance, Neoplasm; Mice; Nanomedicine; Neoplasms; Polymers; Protease Inhibitors; Ritonavir | 2022 |
COVID-19 outbreak in Italy: Clinical-radiological presentation and outcome in three oncologic patients.
We present three patients affected by pulmonary squamous cell carcinoma, metastatic esophageal cancer and advanced non-Hodgkin lymphoma, who incurred in coronavirus 2019 (COVID-19) infection during the early phase of epidemic wave in Italy. All patients presented with fever. Social contact with subject positive for COVID-19 was declared in only one of the three cases. In all cases, laboratory findings showed lymphopenia and elevated C-reactive protein (CRP). Chest x-ray and computed tomography showed bilateral ground-glass opacities, shadowing, interstitial abnormalities, and "crazy paving" pattern which evolved with superimposition of consolidations in one patient. All patients received antiviral therapy based on ritonavir and lopinavir, associated with hydroxychloroquine. Despite treatment, two patients with advanced cancers died after 39 and 17 days of hospitalization, while the patient with lung cancer was dismissed at home, in good conditions. Topics: Aged; Anti-Bacterial Agents; Antiviral Agents; Betacoronavirus; Carcinoma, Squamous Cell; Coronavirus Infections; COVID-19; Disease Outbreaks; Drug Therapy, Combination; Esophageal Neoplasms; Fatal Outcome; Humans; Hydroxychloroquine; Italy; Lopinavir; Lung Neoplasms; Lymphoma, Non-Hodgkin; Male; Middle Aged; Neoplasms; Pandemics; Pneumonia, Viral; Ritonavir; SARS-CoV-2; Tomography, X-Ray Computed; Treatment Outcome | 2021 |
Prolonged SARS-CoV-2 viral shedding in patients with solid tumours and associated factors.
Topics: Adenosine Monophosphate; Aged; Alanine; Antineoplastic Agents; Antiviral Agents; Breast Neoplasms; COVID-19; COVID-19 Drug Treatment; COVID-19 Nucleic Acid Testing; COVID-19 Serological Testing; COVID-19 Serotherapy; Dexamethasone; Drug Combinations; Female; Follow-Up Studies; Glucocorticoids; Humans; Hydroxychloroquine; Immunization, Passive; Immunotherapy; Latent Infection; Lopinavir; Lung Neoplasms; Male; Molecular Targeted Therapy; Neoplasms; Proportional Hazards Models; Risk Factors; Ritonavir; SARS-CoV-2; Spain; Time Factors; Virus Shedding | 2021 |
A Population Pharmacokinetic Model of Oral Docetaxel Coadministered With Ritonavir to Support Early Clinical Development.
Oral administration of docetaxel is an attractive alternative for conventional intravenous (IV) administration. The low bioavailability of docetaxel, however, hinders the application of oral docetaxel in the clinic. The aim of the current study was to develop a population pharmacokinetic (PK) model for docetaxel and ritonavir based on the phase 1 studies and to support drug development of this combination treatment. PK data were collected from 191 patients who received IV docetaxel and different oral docetaxel formulations (drinking solution, ModraDoc001 capsule, and ModraDoc006 tablet) coadministered with ritonavir. A PK model was first developed for ritonavir. Subsequently, a semiphysiological PK model was developed for docetaxel, which incorporated the inhibition of docetaxel metabolism by ritonavir. The uninhibited intrinsic clearance of docetaxel was estimated based on data on IV docetaxel as 1980 L/h (relative standard error, 11%). Ritonavir coadministration extensively inhibited the hepatic metabolism of docetaxel to 9.3%, which resulted in up to 12-fold higher docetaxel plasma concentrations compared to oral docetaxel coadministered without ritonavir. In conclusion, a semiphysiological PK model for docetaxel and ritonavir was successfully developed. Coadministration of ritonavir resulted in increased plasma concentrations of docetaxel after administration of the oral formulations of ModraDoc. Furthermore, the oral ModraDoc formulations showed lower variability in plasma concentrations between and within patients compared to the drinking solution. Comparable exposure could be reached with the oral ModraDoc formulations compared to IV administration. Topics: Administration, Oral; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Biological Availability; Clinical Trials, Phase I as Topic; Computer Simulation; Cytochrome P-450 CYP3A Inhibitors; Docetaxel; Dosage Forms; Drug Administration Schedule; Humans; Infusions, Intravenous; Models, Biological; Neoplasms; Ritonavir; Software | 2020 |
[Drug interaction monitoring of lopinavir/ritonavir in COVID-19 patients with cancer].
新型冠状病毒肺炎治疗药物洛匹那韦/利托那韦(LPV/r)是多种细胞色素P(450)(CYP(450))酶的抑制剂,又是多种CYP(450)酶底物,此外还是P-糖蛋白的抑制剂、葡萄糖醛酸转移酶诱导剂,与很多抗肿瘤药物存在药物相互作用。药品说明书仅列举了少数抗肿瘤药物与LPV/r的相互作用,提供参考信息严重不足。本文系统总结了抗肿瘤药物及常用辅助药物和LPV/r的相互作用及处理建议。. Topics: Betacoronavirus; Coronavirus Infections; COVID-19; COVID-19 Drug Treatment; Drug Combinations; Drug Interactions; Drug Monitoring; Humans; Lopinavir; Neoplasms; Pandemics; Pneumonia, Viral; Ritonavir; SARS-CoV-2 | 2020 |
Clinical features and treatment of COVID-19 patients in northeast Chongqing.
The outbreak of the novel coronavirus in China (SARS-CoV-2) that began in December 2019 presents a significant and urgent threat to global health. This study was conducted to provide the international community with a deeper understanding of this new infectious disease. Epidemiological, clinical features, laboratory findings, radiological characteristics, treatment, and clinical outcomes of 135 patients in northeast Chongqing were collected and analyzed in this study. A total of 135 hospitalized patients with COVID-19 were enrolled. The median age was 47 years (interquartile range, 36-55), and there was no significant gender difference (53.3% men). The majority of patients had contact with people from the Wuhan area. Forty-three (31.9%) patients had underlying disease, primarily hypertension (13 [9.6%]), diabetes (12 [8.9%]), cardiovascular disease (7 [5.2%]), and malignancy (4 [3.0%]). Common symptoms included fever (120 [88.9%]), cough (102 [76.5%]), and fatigue (44 [32.5%]). Chest computed tomography scans showed bilateral patchy shadows or ground glass opacity in the lungs of all the patients. All patients received antiviral therapy (135 [100%]) (Kaletra and interferon were both used), antibacterial therapy (59 [43.7%]), and corticosteroids (36 [26.7%]). In addition, many patients received traditional Chinese medicine (TCM) (124 [91.8%]). It is suggested that patients should receive Kaletra early and should be treated by a combination of Western and Chinese medicines. Compared to the mild cases, the severe ones had lower lymphocyte counts and higher plasma levels of Pt, APTT, d-dimer, lactate dehydrogenase, PCT, ALB, C-reactive protein, and aspartate aminotransferase. This study demonstrates the clinic features and therapies of 135 COVID-19 patients. Kaletra and TCM played an important role in the treatment of the viral pneumonia. Further studies are required to explore the role of Kaletra and TCM in the treatment of COVID-19. Topics: Adolescent; Adrenal Cortex Hormones; Adult; Aged; Anti-Bacterial Agents; Antiviral Agents; Betacoronavirus; Biomarkers; Cardiovascular Diseases; China; Clinical Laboratory Techniques; Coronavirus Infections; Cough; COVID-19; COVID-19 Testing; Diabetes Complications; Diabetes Mellitus; Drug Combinations; Drugs, Chinese Herbal; Fatigue; Female; Fever; Humans; Interferons; Lopinavir; Male; Middle Aged; Neoplasms; Pandemics; Pneumonia, Viral; Retrospective Studies; Ritonavir; SARS-CoV-2; Severity of Illness Index; Tomography, X-Ray Computed | 2020 |
Coronavirus disease-2019 in cancer patients. A report of the first 25 cancer patients in a western country (Italy).
Topics: Age Factors; Aged; Aged, 80 and over; Antiviral Agents; Azithromycin; Betacoronavirus; Ceftriaxone; Cobicistat; Coronavirus Infections; COVID-19; COVID-19 Drug Treatment; Darunavir; Drug Therapy, Combination; Female; HIV Protease Inhibitors; Humans; Hydroxychloroquine; Italy; Lopinavir; Male; Methylprednisolone; Middle Aged; Neoplasms; Pandemics; Pneumonia, Viral; Ritonavir; SARS-CoV-2 | 2020 |
Anticancer drugs and COVID-19 antiviral treatments in patients with cancer: What can we safely use?
Topics: Amides; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Agents, Hormonal; Antineoplastic Agents, Immunological; Antiviral Agents; Betacoronavirus; Chemical and Drug Induced Liver Injury; Coronavirus Infections; COVID-19; COVID-19 Drug Treatment; Cytochrome P-450 Enzyme System; Drug Combinations; Drug Interactions; Histone Deacetylase Inhibitors; Humans; Hydroxychloroquine; Immunosuppression Therapy; Kidney Diseases; Long QT Syndrome; Lopinavir; Neoplasms; Pandemics; Pneumonia, Viral; Poly(ADP-ribose) Polymerase Inhibitors; Proteasome Inhibitors; Protein Kinase Inhibitors; Pyrazines; Ritonavir; SARS-CoV-2 | 2020 |
Tumor growth inhibition by ritonavir: an emerging role in addition to its primary role as an anti-HIV agent.
Topics: Anti-HIV Agents; Antineoplastic Agents; Female; HIV Infections; Humans; Neoplasms; Ritonavir | 2014 |
Ritonavir and efavirenz significantly alter the metabolism of erlotinib--an observation in primary cultures of human hepatocytes that is relevant to HIV patients with cancer.
Erlotinib is approved for the treatment of non-small cell lung and pancreatic cancers, and is metabolized by CYP3A4. Inducers and inhibitors of CYP3A enzymes such as ritonavir and efavirenz, respectively, may be used as part of the highly active antiretroviral therapy drugs to treat patients with human immunodeficiency virus (HIV). When HIV patients with a malignancy need treatment with erlotinib, there is a potential of as-yet-undefined drug-drug interaction. We evaluated these interactions using human hepatocytes benchmarked against the interaction of erlotinib with ketoconazole and rifampin, the archetype cytochrome P450 inhibitor and inducer, respectively. Hepatocytes were treated with vehicle [0.1% dimethylsulfoxide, ritonavir (10 μM)], ketoconazole (10 μM), efavirenz (10 μM), or rifampin (10 μM) for 4 days. On day 5, erlotinib (5 μM) was incubated with the above agents for another 24-48 hours. Concentrations of erlotinib and O-desmethyl erlotinib were quantitated in collected samples (combined lysate and medium) using liquid chromatography and tandem mass spectrometry. The half-life (t(½)) of erlotinib increased from 10.6 ± 2.6 to 153 ± 80 and 23.9 ± 4.8 hours, respectively, upon treatment with ritonavir and ketoconazole. The apparent intrinsic clearance (C(Lint, app)) of erlotinib was lowered 16-fold by ritonavir and 1.9-fold by ketoconazole. Efavirenz and rifampin decreased t1/2 of erlotinib from 10.3 ± 1.1 to 5.0 ± 1.5 and 3.4 ± 0.2 hours, respectively. Efavirenz and rifampin increased the C(Lint, app) of erlotinib by 2.2- and 2-fold, respectively. Our results suggest that to achieve desired drug exposure, the clinically used dose (150 mg daily) of erlotinib may have to be significantly reduced (25 mg every other day) or increased (300 mg daily), respectively, when ritonavir or efavirenz is coadministered. Topics: 14-alpha Demethylase Inhibitors; Adult; Aged; Alkynes; Anti-HIV Agents; Benzoxazines; Cyclopropanes; Drug Interactions; Erlotinib Hydrochloride; Female; Half-Life; Hepatocytes; HIV Infections; HIV Protease Inhibitors; Humans; Ketoconazole; Male; Middle Aged; Neoplasms; Nucleic Acid Synthesis Inhibitors; Quinazolines; Rifampin; Ritonavir | 2013 |
A sensitive combined assay for the quantification of paclitaxel, docetaxel and ritonavir in human plasma using liquid chromatography coupled with tandem mass spectrometry.
A combined assay for the determination of paclitaxel, docetaxel and ritonavir in human plasma is described. The drugs were extracted from 200 μL human plasma using liquid-liquid extraction with tertiar-butylmethylether, followed by high performance liquid chromatography analysis using 10 mM ammonium hydroxide pH 10:methanol (3:7, v/v) as mobile phase. Chromatographic separation was obtained using a Zorbax Extend C(18) column. Labelled analogues of the analytes are used as internal standards. For detection, positive ionization electrospray tandem mass spectrometry was used. Method development including optimisation of the mass transitions and response, mobile phase optimisation and column selection are discussed. The method was validated according to FDA guidelines and the principles of Good Laboratory Practice (GLP). The validated range was 0.5-500 ng/mL for paclitaxel and docetaxel and 2-2000 ng/mL for ritonavir. For quantification, quadratic calibration curves were used (r(2)>0.99). The total runtime of the method is 9 min and the assay combines analytes with differences in ionisation and desired concentration range. Inter-assay accuracy and precision were tested at four concentration levels and were within 10% and less than 10%, respectively, for all analytes. Carry-over was less than 6% and endogenous interferences or interferences between analytes and internal standards were less than 20% of the response at the lower limit of quantification level. The matrix factor and recovery were determined at low, mid and high concentration levels. The matrix factor was around 1 for all analytes and total recovery between 77.5 and 104%. Stability was investigated in stock solutions, human plasma, dry extracts, final extracts and during 3 freeze/thaw cycles. The described method was successfully applied in clinical studies with oral administration of docetaxel or paclitaxel in combination with ritonavir. Topics: Antineoplastic Combined Chemotherapy Protocols; Chromatography, High Pressure Liquid; Docetaxel; Humans; Neoplasms; Paclitaxel; Ritonavir; Sensitivity and Specificity; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Taxoids | 2011 |
The cancer-HIV/AIDS treatment conundrum.
Topics: Acquired Immunodeficiency Syndrome; Anti-HIV Agents; Antineoplastic Agents; Antiretroviral Therapy, Highly Active; Cytochrome P-450 CYP3A; Drug Administration Schedule; Drug Antagonism; HIV Infections; HIV Protease Inhibitors; Humans; Indoles; Neoplasms; Pyrroles; Risk Factors; Ritonavir; Sunitinib | 2010 |