ritonavir has been researched along with Glioblastoma* in 6 studies
6 other study(ies) available for ritonavir and Glioblastoma
Article | Year |
---|---|
Drug repositioning of antiretroviral ritonavir for combinatorial therapy in glioblastoma.
The protease inhibitor ritonavir (RTV) is a clinical-stage inhibitor of the human immunodeficiency virus. In a drug repositioning approach, we here exhibit the additional potential of RTV to augment current treatment of glioblastoma, the most aggressive primary brain tumour of adulthood.. We explored the antitumour activity of RTV and mechanisms of action in a broad spectrum of short-term expanded clinical cell samples from primary and recurrent glioblastoma and in a cohort of conventional cell lines and non-tumour human neural controls in vitro. To validate RTV efficacy in monotherapeutic and in combinatorial settings, we used patient-derived xenograft models in a series of in vivo studies.. RTV monotherapy induced a selective antineoplastic response and demonstrated cytostatic and anti-migratory activity at clinical plasma peak levels. Additional exposure to temozolomide or irradiation further enhanced the effects synergistically, fostered by mechanisms of autophagy and increased endoplasmic reticulum stress. In xenograft models, we consequently observed increasing overall survival under the combinatorial effect of RTV and temozolomide.. Our data establish RTV as a valuable repositioning candidate for further exploration as an adjunct therapeutic in the clinical care of glioblastoma. Topics: Adult; Anti-Retroviral Agents; Antineoplastic Agents; Autophagy; Cell Line; Drug Repositioning; Drug Therapy, Combination; Endoplasmic Reticulum Stress; Female; Glioblastoma; Humans; Male; Neoplasm Recurrence, Local; Ritonavir; Temozolomide | 2020 |
Lopinavir/Ritonavir Treatment Induces Oxidative Stress and Caspaseindependent Apoptosis in Human Glioblastoma U-87 MG Cell Line.
Lopinavir and Ritonavir (LPV/r) treatment is widely used to prevent HIV mother-to-child transmission. Nevertheless, studies related to the impact of these compounds on patients, in particular in the foetus and newborns, are strictly required due to the controversial findings reported in the literature concerning possible neurologic side effects following the administration of these drugs.. In our study, we evaluated the impact of LPV/r treatment on the human glioblastoma U- 87 MG cell line.. In order to evaluate the influence of Lopinavir and Ritonavir in terms of oxidative stress (ROS production), mitochondrial morphology and apoptotic cell death, the latter either in the presence or in the absence of caspase-3 and -9 inhibitors, we treated U-87 MG with increasing doses (0.1-1-10-25-50 µM) of Lopinavir and Ritonavir for 24h, either in single formulation or in combination. ROS production was measured by flow cytometry using H2DCFDA dye, mitochondrial morphology was evaluated using MitoRed dye and apoptotic cell death was monitored by flow cytometry using Annexin V-FITC and Propidium Iodide.. We observed that co-treatment with Lopinavir and Ritonavir (25 and 50 µM) promoted a significant increase in ROS production, caused mitochondrial network damage and induced apoptosis in a caspase-independent manner.. Based on our findings, concordant with others reported in the literature, we hypothesize that LPV/r treatment could not be entirely free from side effects, being aware of the need of validation in in vivo models, necessary to confirm our results. Topics: Apoptosis; Caspases; Cell Line, Tumor; Glioblastoma; Humans; Lopinavir; Mitochondria; Oxidative Stress; Reactive Oxygen Species; Ritonavir | 2018 |
Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells.
In the effort to find better treatments for glioblastoma we tested several currently marketed non-chemotherapy drugs for their ability to enhance the standard cytotoxic drug currently used to treat glioblastoma- temozolomide. We tested four antiviral drugs- acyclovir, cidofovir, maraviroc, ritonavir, and an anti-emetic, aprepitant. We found no cytotoxicity of cidofovir and discussed possible reasons for discrepancy from previous findings of others. We also found no cytotoxicity from acyclovir or maraviroc also in contradistinction to predictions. Cytotoxicity to glioma cell line GAMG for temozolomide alone was 14%, aprepitant alone 7%, ritonavir alone 14%, while temozolomide + aprepitant was 19%, temozolomide + ritonavir 34%, ritonavir + aprepitant 64 %, and all three, temozolomide + ritonavir + aprepitant 78%. We conclude that a remarkable synergy exists between aprepitant and ritonavir. Given the long clinical experience with these two well-tolerated drugs in treating non-cancer conditions, and the current median survival of glioblastoma of 2 years, a trial is warranted of adding these two simple drugs to current standard treatment with temozolomide. Topics: Antiemetics; Antineoplastic Agents, Alkylating; Apoptosis; Aprepitant; Brain Neoplasms; Cell Proliferation; Dacarbazine; Glioblastoma; HIV Protease Inhibitors; Humans; Immunoenzyme Techniques; Morpholines; Ritonavir; Temozolomide; Tumor Cells, Cultured | 2016 |
The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir.
Based on reporting in the last several years, an impressive but dismal list of cytotoxic chemotherapies that fail to prolong the median overall survival of patients with glioblastoma has prompted the development of treatment protocols designed to interfere with growth-facilitating signaling systems by using non-cytotoxic, non-oncology drugs. Recent recognition of the pro-mobility stimulus, interleukin-18, as a driver of centrifugal glioblastoma cell migration allows potential treatment adjuncts with disulfiram and ritonavir. Disulfiram and ritonavir are well-tolerated, non-cytotoxic, non-oncology chemotherapeutic drugs that are marketed for the treatment of alcoholism and human immunodeficiency virus (HIV) infection, respectively. Both drugs exhibit an interleukin-18-inhibiting function. Given the favorable tolerability profile of disulfiram and ritonavir, the unlikely drug-drug interaction with temozolomide, and the poor prognosis of glioblastoma, trials of addition of disulfiram and ritonavir to current standard initial treatment of glioblastoma would be warranted. Topics: Antineoplastic Agents; Dacarbazine; Disulfiram; Glioblastoma; Humans; Interleukin-18; Ritonavir; Temozolomide | 2015 |
CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide.
CUSP9 treatment protocol for recurrent glioblastoma was published one year ago. We now present a slight modification, designated CUSP9*. CUSP9* drugs--aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, sertraline, ritonavir, are all widely approved by regulatory authorities, marketed for non-cancer indications. Each drug inhibits one or more important growth-enhancing pathways used by glioblastoma. By blocking survival paths, the aim is to render temozolomide, the current standard cytotoxic drug used in primary glioblastoma treatment, more effective. Although esthetically unpleasing to use so many drugs at once, the closely similar drugs of the original CUSP9 used together have been well-tolerated when given on a compassionate-use basis in the cases that have come to our attention so far. We expect similarly good tolerability for CUSP9*. The combined action of this suite of drugs blocks signaling at, or the activity of, AKT phosphorylation, aldehyde dehydrogenase, angiotensin converting enzyme, carbonic anhydrase -2,- 9, -12, cyclooxygenase-1 and -2, cathepsin B, Hedgehog, interleukin-6, 5-lipoxygenase, matrix metalloproteinase -2 and -9, mammalian target of rapamycin, neurokinin-1, p-gp efflux pump, thioredoxin reductase, tissue factor, 20 kDa translationally controlled tumor protein, and vascular endothelial growth factor. We believe that given the current prognosis after a glioblastoma has recurred, a trial of CUSP9* is warranted. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Aprepitant; Artemisinins; Artesunate; Auranofin; Brain Neoplasms; Captopril; Celecoxib; Dacarbazine; Disulfiram; Glioblastoma; Humans; Itraconazole; Molecular Targeted Therapy; Morpholines; Neoplasm Recurrence, Local; Pyrazoles; Ritonavir; Sertraline; Signal Transduction; Sulfonamides; Temozolomide; Treatment Outcome | 2014 |
Effects of the proteasome inhibitor ritonavir on glioma growth in vitro and in vivo.
Glioblastoma is a therapeutic challenge as a highly infiltrative, proliferative, and resistant tumor. Among novel therapeutic approaches, proteasome inhibition is very promising in controlling cell cycle and inducing apoptosis. This study investigated the effect of ritonavir, a protease inhibitor of the HIV and a proteasome modulator, on glioma cells. The hypothesis was that proteasome modulation, mainly by only inhibiting proteasome chymotrypsin-like activity, could be sufficient to control tumor progression. The experiments were done on a human glioblastoma-derived GL15 cell line and a rat nitrosourea-induced gliosarcoma 9L cell line. Culturing conditions included monolayer cultures, transplantations into brain slices, and transplantations into rat striata. The study demonstrates that ritonavir, by inhibiting the chymotrypsin-like activity of the proteasome, has cytostatic and cytotoxic effects on glioma cells, and can induce resistances in vitro. Ritonavir was unable to control tumor growth in vivo, likely because the therapeutic dose was not reached in the tumor in vivo. Nevertheless, ritonavir might also be beneficial, by decreasing tumor infiltration, in the reduction of the deleterious peritumor edema in glioblastoma. Topics: Animals; Apoptosis; Cell Division; Cell Line, Tumor; Chymotrypsin; Cysteine Proteinase Inhibitors; Glioblastoma; Humans; Mice; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Rats; Ritonavir | 2004 |