rifapentine and Staphylococcal-Infections

rifapentine has been researched along with Staphylococcal-Infections* in 4 studies

Other Studies

4 other study(ies) available for rifapentine and Staphylococcal-Infections

ArticleYear
    Microbiology spectrum, 2021, 09-03, Volume: 9, Issue:1

    After staphylococci, streptococci and enterococci are the most frequent causes of periprosthetic joint infection (PJI). MICs and minimum biofilm bactericidal concentrations of rifampin, rifabutin, and rifapentine were determined for 67 enterococcal and 59 streptococcal PJI isolates. Eighty-eight isolates had rifampin MICs of ≤1 μg/ml, among which rifabutin and rifapentine MICs were ≤ 8 and ≤4 μg/ml, respectively. There was low rifamycin

    Topics: Anti-Bacterial Agents; Bacterial Infections; Biofilms; Enterococcus; Humans; Microbial Sensitivity Tests; Prosthesis-Related Infections; Rifabutin; Rifampin; Staphylococcal Infections; Staphylococcus

2021
Novel Use of Rifabutin and Rifapentine to Treat Methicillin-Resistant Staphylococcus aureus in a Rat Model of Foreign Body Osteomyelitis.
    The Journal of infectious diseases, 2020, 10-01, Volume: 222, Issue:9

    Owing to patient intolerance or drug interactions, alternative agents to rifampin are needed for management of staphylococcal periprosthetic joint infection. In the current study, we evaluated rifabutin, rifapentine and rifampin, with and without vancomycin, in a rat model of foreign body osteomyelitis.. Proximal tibiae were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) and a Kirschner wire (K-wire) implanted in each. After 4 weeks of infection, rifampin, rifabutin, or rifapentine were administered, alone or with vancomycin. Tibiae and K-wires were cultured, and medians were reported as log10 colony-forming units (CFUs) per gram of bone or log10 CFUs per K-wire, respectively.. Rifampin, rifabutin or rifapentine administered with vancomycin yielded less MRSA from bones (0.10, 3.02, and 0.10 log10 CFUs/g, respectively) than did no treatment (4.36 log10 CFUs/g) or vancomycin alone (4.64 log10 CFUs/g) (both P ≤ .02). The K-wires of animals receiving no treatment or vancomycin monotherapy recovered medians of 1.76 and 2.91 log10 CFUs/g per K-wire, respectively. In contrast, rifampin, rifabutin and rifapentine administered with vancomycin yielded medians of 0.1 log10 CFUs per K-wire, respectively. Rifampin resistance was detected in a single animal in the rifampin monotherapy group.. Rifabutin or rifapentine with vancomycin were as active as rifampin with vancomycin against MRSA in rat foreign body osteomyelitis, suggesting that rifabutin and/or rifapentine may be alternatives to rifampin in the clinical management of staphylococcal periprosthetic joint infections.

    Topics: Animals; Anti-Bacterial Agents; Disease Models, Animal; Drug Therapy, Combination; Foreign Bodies; Male; Methicillin-Resistant Staphylococcus aureus; Osteomyelitis; Rats; Rats, Wistar; Rifabutin; Rifampin; Staphylococcal Infections; Vancomycin

2020
Treatment of Staphylococcus aureus-induced chronic osteomyelitis with bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres.
    Drug design, development and therapy, 2015, Volume: 9

    The purpose of this study was to investigate the curative effect of bone-like hydroxyapatite/poly amino acid (BHA/PAA) as a carrier for poly(lactic-co-glycolic acid)-coated rifapentine microsphere (RPM) in the treatment of rabbit chronic osteomyelitis induced by Staphylococcus aureus.. RPM was prepared through an oil-in-water emulsion solvent evaporation method, and RPM was combined with BHA/PAA to obtain drug-loaded, slow-releasing materials. Twenty-six New Zealand white rabbits were induced to establish the animal model of chronic osteomyelitis. After debridement, the animals were randomly divided into three groups (n=8): the experimental group (with RPM-loaded BHA/PAA), the control group (with BHA/PAA), and the blank group. The RPM-loaded BHA/PAA was evaluated for antibacterial activity, dynamics of drug release, and osteogenic ability through in vitro and in vivo experiments.. In vitro, RPM-loaded BHA/PAA released the antibiotics slowly, inhibiting the bacterial growth of S. aureus for up to 5 weeks. In vivo, at week 4, the bacterial colony count was significantly lower in the experimental group than in the control and blank groups (P<0.01). At week 12, the chronic osteomyelitis was cured and the bone defect was repaired in the experimental group, whereas the infection and bone defect persisted in the control and blank groups.. In vitro and in vivo experiments demonstrated that RPM-loaded BHA/PAA effectively cured S. aureus-induced chronic osteomyelitis. Therefore, BHA/PAA has potential value as a slow-releasing material in clinical setting. Further investigation is needed to determine the optimal dosage for loading rifapentine.

    Topics: Amino Acids; Animals; Anti-Bacterial Agents; Chronic Disease; Delayed-Action Preparations; Drug Carriers; Durapatite; Lactic Acid; Microspheres; Osteomyelitis; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Rabbits; Rifampin; Staphylococcal Infections; Staphylococcus aureus

2015
In vitro activities of rifapentine and rifampin, alone and in combination with six other antibiotics, against methicillin-susceptible and methicillin-resistant staphylococci of different species.
    Antimicrobial agents and chemotherapy, 1985, Volume: 27, Issue:4

    The antistaphylococcal activity of rifapentine, a new rifamycin SV derivative, was evaluated in vitro and compared with that of rifampin. A total of 313 staphylococcal strains freshly isolated from clinical material and including representatives of all currently recognized Staphylococcus species of human origin were used. The susceptibility to methicillin of all the test strains was determined preliminarily. Despite minor differences with some species, the MICs of rifapentine were found to be substantially similar to those of rifampin. Methicillin-resistant strains of all species were most resistant to rifapentine and rifampin than were their methicillin-susceptible counterparts. For most strains tested, the MBCs of both rifamycins exceeded by twofold the respective MICs. Both the checkerboard dilution and time-kill methods were used to determine the interactions of rifapentine or rifampin with six different antibiotics: cefamandole, vancomycin, teicoplanin, gentamicin, erythromycin, and fusidic acid. No significant differences between the two rifamycins in the combinations were observed against either methicillin-susceptible or methicillin-resistant strains. Minor differences were noted depending on the second antibiotic tested or the staphylococcal species examined. Antagonism was never observed, and indifference was the prevalent response. Cases of synergism were observed occasionally with the checkerboard method and slightly more often with the time-kill method.

    Topics: Anti-Bacterial Agents; Drug Combinations; Humans; Methicillin; Microbial Sensitivity Tests; Penicillin Resistance; Rifampin; Staphylococcal Infections; Staphylococcus; Time Factors

1985