ribociclib has been researched along with Carcinoma--Hepatocellular* in 3 studies
3 other study(ies) available for ribociclib and Carcinoma--Hepatocellular
Article | Year |
---|---|
Ribociclib enhances infigratinib-induced cancer cell differentiation and delays resistance in FGFR-driven hepatocellular carcinoma.
Infigratinib is a pan-FGFR (fibroblast growth factor receptor) inhibitor that has shown encouraging activity in FGFR-dependent hepatocellular carcinoma (HCC) models. However, long-term treatment results in the emergence of resistant colonies. We sought to understand the mechanisms behind infigratinib-induced tumour cell differentiation and resistance and to explore the potential of adding the CDK4/6 inhibitor ribociclib to prolong cell differentiation.. Nine high and three low FGFR1-3-expressing HCC patient-derived xenograft (PDX) tumours were subcutaneously implanted into SCID mice and subsequently treated with either infigratinib alone or in combination with ribociclib. Tumour tissues were then subjected to immunohistochemistry to assess cell differentiation, as indicated by the cytoplasmic-to-nuclear ratio and markers such as CYP3A4, HNF4α and albumin. Western blot analyses were performed to investigate the signalling pathways involved.. Infigratinib induced cell differentiation in FGFR1-3-dependent HCC PDX models, as indicated by an increase in the cytoplasmic/nuclear ratio and an increase in CYP3A4, HNF4α and albumin. Resistant colonies emerged in long-term treatment, characterised by a reversal of differentiated cell morphology, a reduction in the cytoplasmic-to-nuclear ratio and a loss of differentiation markers. Western blot analyses identified an increase in the CDK4/Cdc2/Rb pathway. The addition of ribociclib effectively blocked this pathway and reversed resistance to infigratinib, resulting in prolonged cell differentiation and growth inhibition.. Our findings demonstrate that the combined inhibition of FGFR/CDK4/6 pathways is highly effective in providing long-lasting tumour growth inhibition and cell differentiation and reducing drug resistance. Therefore, further clinical investigations in patients with FGFR1-3-dependant HCC are warranted. Topics: Aminopyridines; Animals; Carcinoma, Hepatocellular; Cell Differentiation; Cell Line, Tumor; Cell Proliferation; Humans; Liver Neoplasms; Male; Mice; Mice, SCID; Phenylurea Compounds; Purines; Pyrimidines; Xenograft Model Antitumor Assays | 2021 |
Treatment of Retinoblastoma 1-Intact Hepatocellular Carcinoma With Cyclin-Dependent Kinase 4/6 Inhibitor Combination Therapy.
Synthetic cyclin-dependent kinase (CDK) 4/6 inhibitors exert antitumor effects by forcing RB1 in unphosphorylated status, causing not only cell cycle arrest but also cellular senescence, apoptosis, and increased immunogenicity. These agents currently have an indication in advanced breast cancers and are in clinical trials for many other solid tumors. HCC is one of promising targets of CDK4/6 inhibitors. RB family dysfunction is often associated with the initiation of HCC; however, this is revivable, as RB family members are not frequently mutated or deleted in this malignancy.. In conclusion, CDK4/6 inhibitors have a potential to treat a wide variety of RB1-intact cancers including HCC when combined with an appropriate kinase inhibitor. Topics: Aminopyridines; Animals; Benzimidazoles; Carcinoma, Hepatocellular; Cell Proliferation; Cell Survival; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinase 6; Hep G2 Cells; Humans; In Vitro Techniques; Liver Neoplasms; Liver Neoplasms, Experimental; Mice; Neoplasm Transplantation; Piperazines; Protein Kinase Inhibitors; Purines; Pyridines; Retinoblastoma Protein; Tumor Suppressor Protein p53; Xenopus Proteins | 2021 |
Predictors of ribociclib-mediated antitumour effects in native and sorafenib-resistant human hepatocellular carcinoma cells.
The cyclin-dependent kinases (CDKs) CDK4 and CDK6 are important regulators of the cell cycle and represent promising targets in cancer treatment. We aimed to investigate the relevance of CDK4/6 in the development of hepatocellular carcinoma (HCC) and the potential of ribociclib, a novel orally available CDK4/6 inhibitor, as a treatment for HCC.. The effect of ribociclib was assessed in native and sorafenib-resistant HCC cell lines using viability assays, colony formation assays and FACS-based analyses. The expression of potential biomarkers of ribociclib response was assessed in cell lines and primary human hepatocytes using Western blotting. In addition, the prognostic relevance of the cyclin D-CDK4/6-retinoblastoma protein (Rb) pathway was assessed by analysing mRNA expression data from The Cancer Genome Atlas (TCGA).. We found that ribociclib downregulated Rb and caused a profound loss of cell viability by inducing G1 cell cycle arrest in HCC cell lines exhibiting Rb-high/p16-low protein expression profiles, but not in Rb-low/p16-high cells, regardless their sensitivity to sorafenib. siRNA-based Rb silencing decreased cell proliferation, but did not diminish the sensitivity of HCC cells to ribociclib. Furthermore, we found that ribociclib synergized with sorafenib to cause cell death. mRNA analysis of primary human HCC specimens showed that CDK4 expression was correlated with patient survival and that the expression of Rb and the p16-encoding CDKN2A gene were inversely correlated.. From our data we conclude that impairment of the cyclin D-CDK4/6-Rb pathway is a frequent feature of HCC and that it is associated with a unfavourable prognosis. We also found that ribociclib exhibits a preferential antineoplastic activity in Rb-high HCC cells. Our results warrant further investigation of Rb and p16 expression as markers of HCC sensitivity to ribociclib. Topics: Aminopyridines; Antineoplastic Agents; Apoptosis; Biomarkers, Tumor; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinase 6; Cyclin-Dependent Kinase Inhibitor p16; Drug Resistance, Neoplasm; G1 Phase Cell Cycle Checkpoints; Hepatocytes; Humans; Liver Neoplasms; Purines; Retinoblastoma Protein; RNA, Small Interfering; Sorafenib | 2019 |