rhyncophylline and Brain-Ischemia

rhyncophylline has been researched along with Brain-Ischemia* in 4 studies

Other Studies

4 other study(ies) available for rhyncophylline and Brain-Ischemia

ArticleYear
Rhynchophylline ameliorates cerebral ischemia by improving the synaptic plasticity in a middle cerebral artery occlusion induced stroke model.
    European journal of pharmacology, 2023, Feb-05, Volume: 940

    Previous studies have documented that rhynchophylline exerts antioxidative and anti-inflammatory effects on ischemic neuronal damage in vitro or in vivo. There is a considerable lack of direct evidence for its role in neural function and neuroplasticity after ischemic stroke.. This study aims to explore the role of rhynchophylline in middle cerebral artery occlusion (MCAO) induced ischemic stroke model and the potential mechanisms.. Mice were randomly divided into the following three groups: Sham, MCAO + ddH2O, and MCAO + Rhy(40 mg/kg by oral gavage) groups. Cerebral ischemia was induced by MCAO. Cerebral blood flow was monitored to indicate the success of the ischemic model. The neurological severity score and a series of related behavior tests were performed(after MCAO 3d,7d,14d,21d,28d). Golgi staining and Sholl analysis were used to evaluate the complexity of dendrites and the density of dendritic spines. Immunohistochemistry was used to detect the expression of synapsin I and NeuN.. Administration of rhynchophylline for 7 consecutive days after the onset of cerebral ischemia alleviated the sensory-motor functional defects and ameliorated hippocampus-dependent spatial memory injury as well as reduced the infarct volume induced by MCAO. However, golgi staining and sholl analysis showed that rhynchophylline improved dendritic complexity and spine density as well as the synaptic plasticity. Furthermore,the expression of synapsin I and Neun was significantly reduced after cerebral ischemia and rhynchophylline administration ameliorated the loss of synapsin I.. Rhynchophylline is a promising treatment for ischemic stroke via improving synaptic plasticity and ameliorating the sensory-motor function.

    Topics: Animals; Brain Ischemia; Infarction, Middle Cerebral Artery; Ischemic Stroke; Mice; Neuronal Plasticity; Synapsins

2023
Gastrodin combined with rhynchophylline inhibits cerebral ischaemia-induced inflammasome activation via upregulating miR-21-5p and miR-331-5p.
    Life sciences, 2019, Dec-15, Volume: 239

    The protective effects of gastrodin and rhynchophylline in ischaemic injury have been reported. However, the underlying mechanism and the effect of the combination of these two drugs in ischaemic injury remain unclear. Herein, we aimed to explore the effects of the combination of gastrodin and rhynchophylline on ischaemia-induced inflammasome activation as well as the underlying mechanism.. Middle cerebral artery occlusion (MCAO) mice and oxygen glucose deprivation (OGD)-treated BV2 cells were used as in vivo and in vitro models of ischaemia, respectively. Cerebral injury was determined by TTC staining, H&E staining and neurological deficit scores. The effects of the combination of gastrodin and rhynchophylline on inflammasome activation were measured by the MTT assay, Western blotting and ELISA. The expression of miR-21-5p and miR-331-5p was measured by qRT-PCR. The potential binding between miR-21-5p and TXNIP and between miR-331-5p and TRAF6 was analysed with Targetscan and a luciferase assay.. MCAO-induced tissue infarction, neurological deficits, inflammasome activation, and downregulation of miR-21-5p and miR-331-5p were all mitigated by the combination of gastrodin and rhynchophylline. In OGD-treated BV2 cells, the combination of gastrodin and rhynchophylline also alleviated inflammasome activation and restored the expression of miR-21-5p and miR-331-5p. TXNIP and TRAF6 were confirmed to be targets of miR-21-5p and miR-331-5p, respectively. Moreover, OGD-induced inflammasome activation was attenuated by the overexpression of either miR-331-5p or miR-21-5p and was further attenuated by the overexpression of both. Finally, we demonstrated that a miR-21-5p inhibitor and/or a miR-331-5p inhibitor counteracted the protective effects of gastrodin and/or rhynchophylline.. The combination of gastrodin and rhynchophylline exerts neuroprotective effects by preventing ischaemia-induced inflammasome activation via upregulating miR-21-5p and miR-331-5p.

    Topics: Animals; Benzyl Alcohols; Brain Ischemia; Glucosides; Infarction, Middle Cerebral Artery; Inflammasomes; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Neuroprotective Agents; Oxindoles; Transcriptional Activation

2019
Neuroprotective effects of rhynchophylline against ischemic brain injury via regulation of the Akt/mTOR and TLRs signaling pathways.
    Molecules (Basel, Switzerland), 2014, Jul-30, Volume: 19, Issue:8

    Rhynchophylline (Rhy) is an alkaloid isolated from Uncaria which has long been recommended for the treatment of central nervous diseases. In our study, the neuroprotective effect of Rhy was investigated in a stroke model, namely permanent middle cerebral artery occlusion (pMCAO). Rats were injected intraperitoneally once daily for four consecutive days before surgery and then received one more injection after surgery. The protein and mRNA levels of p-Akt, p-mTOR, apoptosis-related proteins (p-BAD and cleaved caspase-3), TLR2/4/9, NF-κB, MyD88, BDNF and claudin-5 were examined. Following pMCAO, Rhy treatment not only ameliorated neurological deficits, infarct volume and brain edema, but also increased claudin-5 and BDNF expressions (p < 0.05). Moreover, Rhy could activate PI3K/Akt/mTOR signaling while inhibiting TLRs/NF-κB pathway. Wortmannin, a selective PI3K inhibitor, could abolish the neuroprotective effect of Rhy and reverse the increment in p-Akt, p-mTOR and p-BAD levels. In conclusion, we hypothesize that Rhy protected against ischemic damage, probably via regulating the Akt/mTOR pathway.

    Topics: Animals; bcl-Associated Death Protein; Brain Edema; Brain Infarction; Brain Ischemia; Brain-Derived Neurotrophic Factor; Caspase 3; Claudin-5; Disease Models, Animal; Gene Expression; Indole Alkaloids; Male; Neuroprotective Agents; NF-kappa B; Oxindoles; Proto-Oncogene Proteins c-akt; Rats; Signal Transduction; Toll-Like Receptors; TOR Serine-Threonine Kinases

2014
Protective effect of rhynchophylline and isorhynchophylline on in vitro ischemia-induced neuronal damage in the hippocampus: putative neurotransmitter receptors involved in their action.
    Life sciences, 2004, Dec-03, Volume: 76, Issue:3

    Rhynchophylline and isorhynchophylline are major tetracyclic oxindole alkaloid components of Uncaira species, which have been long used as medicinal plants. In this study we examined the protective effects of rhynchophylline and isorhynchophylline on in vitro ischemia-induced neuronal damage in the hippocampus and interaction of these alkaloids with neurotransmitter receptors in a receptor expression model of Xenopus oocytes. In vitro ischemia was induced by exposing the hippocampal slices to oxygen- and D-glucose-deprived medium over 8 min. The resultant neuronal damage was elucidated as deterioration of population spike (PS) amplitudes evoked trans-synaptically by electrical stimulation of Schaffer collaterals and recorded in the CA1 area. Rhynchophylline and isorhynchophylline, as well as the N-methyl-D-aspartate (NMDA) antagonist (+/-)-2-amino-5-phosphono-valeric acid (APV), the muscarinic M1 receptor antagonist pirenzepine, and the 5-HT2 receptor antagonist ketanserin, attenuated the in vitro ischemia-induced neuronal damage in a concentration-dependent manner. There was no difference in the extent of protection against the neuronal damage between rhynchophylline and isorhynchophylline treatment. In Xenopus oocytes expressing the rat brain receptors encoded by total RNA, both rhynchophylline and isorhynchophylline reduced muscarinic receptor- and 5-HT2 receptor-mediated current responses in a competitive manner. Together with our previous findings that rhynchophylline and isorhynchophylline have a non-competitive antagonistic effect on the NMDA-type ionotropic glutamate receptors, the present results suggest that these alkaloids exert their protective action against ischemia-induced neuronal damage by preventing NMDA, muscarinic M1, and 5-HT2 receptors-mediated neurotoxicity during ischemia.

    Topics: Alkaloids; Animals; Brain Ischemia; Cell Hypoxia; Hippocampus; In Vitro Techniques; Indole Alkaloids; Ketanserin; Male; Membrane Potentials; Neurons; Oocytes; Oxindoles; Pirenzepine; Rats; Rats, Wistar; Uncaria; Valine; Xenopus laevis

2004