rhamnetin and Carcinoma--Hepatocellular

rhamnetin has been researched along with Carcinoma--Hepatocellular* in 3 studies

Other Studies

3 other study(ies) available for rhamnetin and Carcinoma--Hepatocellular

ArticleYear
Rhamnetin ameliorates non-alcoholic steatosis and hepatocellular carcinoma in vitro.
    Molecular and cellular biochemistry, 2023, Volume: 478, Issue:8

    Non-alcoholic fatty liver (NAFLD) is a widespread disease with various complications including Non-alcoholic steatohepatitis (NASH) that could lead to cirrhosis and ultimately hepatocellular carcinoma (HCC). Up till now there is no FDA approved drug for treatment of NAFLD. Flavonoids such as Rhamnetin (Rhm) have been ascribed effective anti-inflammatory and anti-oxidative properties. Thus, Rhm as a potent flavonoid could target multiple pathological cascades causing NAFLD to prevent its progression into HCC. NAFLD is a multifactorial disease and its pathophysiology is complex and is currently challenged by the 'Multiple-hit hypothesis' that includes wider range of comorbidities rather than previously established theory of 'Two-hit hypothesis'. Herein, we aimed at establishing reliable in vitro NASH models using different mixtures of variable ratios and concentrations of oleic acid (OA) and palmitic acid (PA) combinations using HepG2 cell lines. Moreover, we compared those models in the context of oil red staining, triglyceride levels and their altered downstream molecular signatures for genes involved in de novo lipogenesis, inflammation, oxidative stress and apoptotic machineries as well. Lastly, the effect of Rhm on NASH and HCC models was deeply investigated. Over the 10 NASH models tested, PA 500 µM concentration was the best model to mimic the molecular events of steatosis induced NAFLD. Rhm successfully ameliorated the dysregulated molecular events caused by the PA-induced NASH. Additionally, Rhm regulated inflammatory and oxidative machinery in the HepG2 cancerous cell lines. In conclusion, PA 500 µM concentration is considered an effective in vitro model to mimic NASH. Rhm could be used as a promising therapeutic modality against both NASH and HCC pathogenesis.

    Topics: Carcinoma, Hepatocellular; Flavonoids; Humans; Liver Neoplasms; Non-alcoholic Fatty Liver Disease; Palmitic Acid; Quercetin

2023
Rhamnetin decelerates the elimination and enhances the antitumor effect of the molecular-targeting agent sorafenib in hepatocellular carcinoma cells via the miR-148a/PXR axis.
    Food & function, 2021, Mar-21, Volume: 12, Issue:6

    The pregnane X receptor (PXR) mediates the resistance of sorafenib in hepatocellular carcinoma (HCC) by promoting the clearance or elimination of sorafenib via the drug resistance-related downstream genes of the PXR. Previously, we revealed that rhamnetin (a flavonoid functioning as an inhibitor of sirtuin (Sirt)1) could inhibit expression of the downstream gene of the PXR: multidrug resistance 1 (mdr-1). However, how rhamnetin regulates the PXR pathway in HCC cells is not known. Here, we demonstrated that rhamnetin decelerated elimination of the molecular-targeting agent sorafenib in HCC cells via the microRNA (miR)-148a/PXR axis. Rhamnetin treatment decreased expression of the drug resistance-related downstream genes of PXR (cyp3a4 [cytochrome P-450] or mdr-1 [multi-drug resistance 1]), which mediate the metabolism or elimination of sorafenib in HCC cells. Mechanistically, rhamnetin increased expression of miR-148a (which is tumor-suppressive) in a P53-dependent manner, leading to inhibition of PXR expression and decrease in expression of its downstream genes. Rhamnetin enhanced miRNA-148a transcription by repressing Sirt1 activation to enhance acetylation at residue-373 of P53. Rhamnetin treatment decelerated the metabolic clearance of sorafenib in HCC cells and enhanced the sensitivity of HCC cells to sorafenib. Our results suggest that rhamnetin could be a potential agent for overcoming sorafenib resistance in HCC treatment.

    Topics: Animals; Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Line, Tumor; Drug Interactions; Drug Resistance, Neoplasm; Liver; Liver Neoplasms; Mice; Mice, Nude; MicroRNAs; Pregnane X Receptor; Quercetin; Sorafenib

2021
Rhamnetin induces sensitization of hepatocellular carcinoma cells to a small molecular kinase inhibitor or chemotherapeutic agents.
    Biochimica et biophysica acta, 2016, Volume: 1860, Issue:7

    The rapid development of multi-drug resistance (MDR) process has hindered the effectiveness of advanced hepatocellular carcinoma (HCC) treatments. Notch-1 pathway, which mediates the stress-response, promotes cell survival, EMT (epithelial-mesenchymal transition) process and induces anti-apoptosis in cancer cells, would be a potential target for overcoming MDR process. This study investigated the potential application of rhamnetin, a specific inhibitor of Notch-1 pathway, in anti-tumor drug sensitization of HCC treatment.. The expression of miR-34a, proteins belonging to Notch-1 signaling pathway or MDR-related proteins was detected by quantitative polymerase chain reaction (qPCR) and western blot assay. To identify whether rhamnetin induces the chemotherapeutic sensitization in HCC cells, the MTT-assays, flow cytometry, soft agar, trans-well and nude mice assays were performed.. The endogenous expression of miR-34a was significantly increased and the expression of Notch-1 and Survivin was downregulated after rhamnetin treatment. Treatment of rhamnetin also reduced the expression of MDR related proteins P-GP (P-glycoprotein) and BCRP (breast cancer resistance protein). Rhamnetin increased the susceptibility of HCC cells and especially HepG2/ADR, a MDR HCC cell line, to a small molecular kinase inhibitor sorafenib or chemotherapeutic drugs etoposide and paclitaxel. The IC(50) value of those drugs correspondingly decreased.. Together, our findings suggest that rhamnetin treatment may attenuate the MDR process in HCC cells. These findings may contribute to more effective strategies for HCC therapy.. Rhamnetin acts as a promising sensitizer to chemotherapy and may be a novel approach to overcome the MDR process of HCC.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Hepatocellular; Cell Survival; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Etoposide; Gene Expression Regulation, Neoplastic; Hep G2 Cells; Humans; Inhibitory Concentration 50; Liver Neoplasms; Male; Mice, SCID; MicroRNAs; Niacinamide; Paclitaxel; Phenylurea Compounds; Protein Kinase Inhibitors; Quercetin; Receptor, Notch1; Signal Transduction; Sorafenib; Transfection; Xenograft Model Antitumor Assays

2016