rhamnazin and Inflammation

rhamnazin has been researched along with Inflammation* in 2 studies

Other Studies

2 other study(ies) available for rhamnazin and Inflammation

ArticleYear
The alleviative effect of flavonol-type Nrf2 activator rhamnazin from Physalis alkekengi L. var. franchetii (Mast.) Makino on pulmonary disorders.
    Phytotherapy research : PTR, 2022, Volume: 36, Issue:4

    Rhamnazin (RN) is a flavonol isolated from the calyxes and fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino, which has been used for treating pulmonary diseases in traditional Chinese medicine. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a therapeutic target for pulmonary diseases. In the present study, the underlying mechanism and pharmacological effect of RN against pulmonary disorders are investigated. Human lung epithelial Beas-2B cell and RAW 264.7 murine macrophage-based cell models, and a cigarette smoke (CS)-induced pulmonary impairment mice model are adopted for investigation in vitro and in vivo. RN is identified to be an Nrf2 activator, which promotes Nrf2 dissociation from Keap1 via reacting with the Cys151 cysteine residue of Keap1, and suppresses Nrf2 ubiquitination. In addition, RN is able to attenuate toxicant-stimulated oxidative stress and inflammatory response in vitro. Importantly, RN significantly relieves CS-induced oxidative insult and inflammation, and RN-induced inhibition of inflammation is related to inhibition of nuclear transcription factor-κB (NF-κB) and induction of cell autophagy. In conclusion, our data indicate that RN is an activator of the Nrf2 pathway and evidently alleviates pulmonary disorders via restricting NF-κB activation and promoting autophagy. RN is a promising candidate for the therapy of pulmonary disorders.

    Topics: Animals; Flavonoids; Flavonols; Inflammation; Kelch-Like ECH-Associated Protein 1; Lung Diseases; Mice; NF-E2-Related Factor 2; NF-kappa B; Oxidative Stress; Physalis

2022
Rhamnazin Ameliorates Traumatic Brain Injury in Mice via Reduction in Apoptosis, Oxidative Stress, and Inflammation.
    Neuroimmunomodulation, 2022, Volume: 29, Issue:1

    Traumatic brain injury (TBI) is posing serious health challenges for people across the globe due to high morbidity and mortality. However, none of the agents prevents or limits the damage caused by TBI because of its multifactorial etiology. Thus, the discovery of novel agents which can act via several pathways could serve the purpose and afford favorable consequence against TBI. Therefore, in the present article, we intended to investigate the protective effect of rhamnazin (RMZ), a dimethoxyflavone against experimentally induced TBI in mice.. The effect of RMZ was investigated on cerebral edema and grip test score after induction of experimental brain injury in rats. The effect of RMZ was also investigated on neuronal degeneration in brain tissues of the experimental mice via Nissl staining and flow cytometry analysis. The expression of Bax and Bcl-2 was also quantified using Western blot analysis. The level of inflammatory cytokines (TNF-α and IL-1β) and oxidative stress markers (malondialdehyde, superoxide dismutase, and glutathione peroxidase) was also determined using enzyme-linked immunosorbent assay.. RMZ showed a significant reduction in edema and improved grip strength. It also prevented neuronal degeneration via inhibition of neuronal apoptosis as shown by flow cytometry analysis. RMZ showed an antiapoptotic effect via reduction of Bax and increased the expression of Bcl-2 in Western blot analysis. It also showed to inhibit oxidative stress and inflammation compared to the TBI group.. Collectively, our study is first to demonstrate the protective effect of RMZ against experimentally induced TBI in rats.

    Topics: Animals; Apoptosis; Brain Injuries, Traumatic; Flavonols; Inflammation; Mice; Oxidative Stress; Rats

2022