rg108 and Inflammation

rg108 has been researched along with Inflammation* in 2 studies

Other Studies

2 other study(ies) available for rg108 and Inflammation

ArticleYear
S100A8 and S100A12 Proteins as Biomarkers of High Disease Activity in Patients with Rheumatoid Arthritis That Can Be Regulated by Epigenetic Drugs.
    International journal of molecular sciences, 2022, Dec-31, Volume: 24, Issue:1

    Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that is still not well understood in terms of its pathogenesis and presents diagnostic and therapeutic challenges. Monocytes are key players in initiating and maintaining inflammation through the production of pro-inflammatory cytokines and S100 proteins in RA. This study aimed to test a specific DNA methylation inhibitor (RG108) and activator (budesonide) in the regulation of pro-inflammatory mediators-especially the S100 proteins. We also searched for new biomarkers of high disease activity in RA patients. RNA sequencing analysis of healthy controls (HCs) and RA monocytes was performed. Genes such as the S100 family, TNF, and IL-8 were validated by qRT-PCR following DNA-methylation-targeted drug treatment in a monocytic THP-1 cell line. The concentrations of the S100A8, S100A11, and S100A12 proteins in the sera and synovial fluids of RA patients were tested and correlated with clinical parameters. We demonstrated that RA monocytes had significantly increased levels of S100A8, S100A9, S100A11, S100A12, MYD88, JAK3, and IQGAP1 and decreased levels of IL10RA and TGIF1 transcripts. In addition, stimulation of THP-1 cells with budesonide statistically reduced the expression of the S100 family, IL-8, and TNF genes. In contrast, THP-1 cells treated with RG108 had increased levels of the S100 family and TNF genes. We also revealed a significant upregulation of S100A8, S100A11, and S100A12 in RA patients, especially in early RA compared to HC sera. In addition, protein levels of S100A8, S100A11, and S100A12 in RA synovial fluids compared to HC sera were significantly increased. Overall, our data suggest that the S100A8 and S100A12 proteins are strongly elevated during ongoing inflammation, so they could be used as a better biomarker of disease activity than CRP. Interestingly, epigenetic drugs can regulate these S100 proteins, suggesting their potential use in targeting RA inflammation.

    Topics: Arthritis, Rheumatoid; Biomarkers; Budesonide; Calgranulin A; Calgranulin B; Epigenesis, Genetic; Homeodomain Proteins; Humans; Inflammation; Interleukin-8; Repressor Proteins; S100 Proteins; S100A12 Protein

2022
Neuroprotective effects of some epigenetic modifying drugs' on Chlamydia pneumoniae-induced neuroinflammation: A novel model.
    PloS one, 2021, Volume: 16, Issue:11

    Chlamydia pneumoniae (Cpn) is a gram-negative intracellular pathogen that causes a variety of pulmonary diseases, and there is growing evidence that it may play a role in Alzheimer's disease (AD) pathogenesis. Cpn can interact functionally with host histones, altering the host's epigenetic regulatory system by introducing bacterial products into the host tissue and inducing a persistent inflammatory response. Because Cpn is difficult to propagate, isolate, and detect, a modified LPS-like neuroinflammation model was established using lyophilized cell free supernatant (CFS) obtained from infected cell cultures, and the effects of CFS were compared to LPS. The neuroprotective effects of Trichostatin A (TSA), givinostat, and RG108, which are effective on epigenetic mechanisms, and the antibiotic rifampin, were studied in this newly introduced model and in the presence of amyloid beta (Aβ) 1-42. The neuroprotective effects of the drugs, as well as the effects of CFS and LPS, were evaluated in Aβ-induced neurotoxicity using a real-time cell analysis system, total ROS, and apoptotic impact. TSA, RG108, givinostat, and rifampin all demonstrated neuroprotective effects in both this novel model and Aβ-induced neurotoxicity. The findings are expected to provide early evidence on neuroprotective actions against Cpn-induced neuroinflammation and Aβ-induced neurotoxicity, which could represent a new treatment option for AD, for which there are currently few treatment options.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Carbamates; Chlamydophila Infections; Chlamydophila pneumoniae; Epigenesis, Genetic; Humans; Hydroxamic Acids; Inflammation; Neuroprotective Agents; Peptide Fragments; Phthalimides; THP-1 Cells; Tryptophan

2021