rg108 and Amyotrophic-Lateral-Sclerosis

rg108 has been researched along with Amyotrophic-Lateral-Sclerosis* in 2 studies

Other Studies

2 other study(ies) available for rg108 and Amyotrophic-Lateral-Sclerosis

ArticleYear
Functional Restoration of Amyotrophic Lateral Sclerosis Patient-Derived Mesenchymal Stromal Cells Through Inhibition of DNA Methyltransferase.
    Cellular and molecular neurobiology, 2016, Volume: 36, Issue:4

    Alteration of DNA methylation is highly associated with aging and neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS). Remedying these aberrant methylation patterns may serve to improve these diseases. Previously, we reported that human bone marrow mesenchymal stromal cells isolated from ALS patients (ALS-MSCs) have functionally decreased stem cell potency, and excessively express DNA methyltransferases (DNMTs). In this study, we examined the correlation between excessive DNMT expression and functional decline in ALS-MSCs. The DNMT inhibitor RG108 was used for this. RG108-treated ALS-MSCs exhibit increased expression of the anti-senescence genes TERT, VEGF, and ANG, and decreased expression of the senescence-related genes ATM and p21. The activity of SA-β-galactosidase and the expression of senescence proteins p53 and p16 were reduced in RG108-treated ALS-MSCs. The abilities of cell migration and protection against oxidative damage were improved in the treated ALS-MSCs. In neuronal differentiation experiments, the treated MSCs more effectively differentiated into neuron-like cells. These results suggest that ALS-MSC function can be restored by inhibiting excessively expressed DNMTs, an approach that may ultimately provide better efficacy in stem cell therapy.

    Topics: Amyotrophic Lateral Sclerosis; Cell Differentiation; Cell Movement; Cellular Senescence; DNA Modification Methylases; Humans; Mesenchymal Stem Cells; Neurons; Neuroprotection; Phthalimides; Tryptophan

2016
Epigenetic regulation of motor neuron cell death through DNA methylation.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011, Nov-16, Volume: 31, Issue:46

    DNA methylation is an epigenetic mechanism for gene silencing engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to cytosine residues in gene-regulatory regions. It is unknown whether aberrant DNA methylation can cause neurodegeneration. We tested the hypothesis that Dnmts can mediate neuronal cell death. Enforced expression of Dnmt3a induced degeneration of cultured NSC34 cells. During apoptosis of NSC34 cells induced by camptothecin, levels of Dnmt1 and Dnmt3a increased fivefold and twofold, respectively, and 5-methylcytosine accumulated in nuclei. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocked apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with RG108 and procainamide protected cultured neurons from excessive DNA methylation and apoptosis. In vivo, Dnmt1 and Dnmt3a are expressed differentially during mouse brain and spinal cord maturation and in adulthood when Dnmt3a is abundant in synapses and mitochondria. Dnmt1 and Dnmt3a are expressed in motor neurons of adult mouse spinal cord, and, during their apoptosis induced by sciatic nerve avulsion, nuclear and cytoplasmic 5-methylcytosine immunoreactivity, Dnmt3a protein levels and Dnmt enzyme activity increased preapoptotically. Inhibition of Dnmts with RG108 blocked completely the increase in 5-methycytosine and the apoptosis of motor neurons in mice. In human amyotrophic lateral sclerosis (ALS), motor neurons showed changes in Dnmt1, Dnmt3a, and 5-methylcytosine similar to experimental models. Thus, motor neurons can engage epigenetic mechanisms to drive apoptosis, involving Dnmt upregulation and increased DNA methylation. These cellular mechanisms could be relevant to human ALS pathobiology and disease treatment.

    Topics: 5-Methylcytosine; Age Factors; Amyloid Precursor Protein Secretases; Amyotrophic Lateral Sclerosis; Animals; Apoptosis; Aspartic Acid Endopeptidases; Camptothecin; Caspase 3; Cell Line, Transformed; Central Nervous System; Cytosine; Disease Models, Animal; DNA (Cytosine-5-)-Methyltransferase 1; DNA (Cytosine-5-)-Methyltransferases; DNA Methylation; DNA Methyltransferase 3A; Enzyme Inhibitors; Epigenomics; Gene Expression Regulation, Developmental; Green Fluorescent Proteins; Humans; Indoles; Mice; Mice, Transgenic; Motor Neurons; Mutation; Phthalimides; Propionates; RNA, Small Interfering; Sciatic Neuropathy; Superoxide Dismutase; Transfection; Tryptophan; Up-Regulation

2011