retinaldehyde and Hyperplasia

retinaldehyde has been researched along with Hyperplasia* in 4 studies

Other Studies

4 other study(ies) available for retinaldehyde and Hyperplasia

ArticleYear
Synergistic effect of hyaluronate fragments in retinaldehyde-induced skin hyperplasia which is a Cd44-dependent phenomenon.
    PloS one, 2010, Dec-16, Volume: 5, Issue:12

    CD44 is a polymorphic proteoglycan and functions as the principal cell-surface receptor for hyaluronate (HA). Heparin-binding epidermal growth factor (HB-EGF) activation of keratinocyte erbB receptors has been proposed to mediate retinoid-induced epidermal hyperplasia. We have recently shown that intermediate size HA fragments (HAFi) reverse skin atrophy by a CD44-dependent mechanism.. Treatment of primary mouse keratinocyte cultures with retinaldehyde (RAL) resulted in the most significant increase in keratinocyte proliferation when compared with other retinoids, retinoic acid, retinol or retinoyl palmitate. RAL and HAFi showed a more significant increase in keratinocyte proliferation than RAL or HAFi alone. No proliferation with RAL was observed in CD44-/- keratinocytes. HA synthesis inhibitor, 4-methylumbelliferone inhibited the proliferative effect of RAL. HB-EGF, erbB1, and tissue inhibitor of MMP-3 blocking antibodies abrogated the RAL- or RAL- and HAFi-induced keratinocyte proliferation. Topical application of RAL or RAL and HAFi for 3 days caused a significant epidermal hyperplasia in the back skin of wild-type mice but not in CD44-/- mice. Topical RAL and HAFi increased epidermal CD44 expression, and the epidermal and dermal HA. RAL induced the expression of active HB-EGF and erbB1. However, treatment with RAL and HAFi showed a more significant increase in pro-HB-EGF when compared to RAL or HAFi treatments alone. We then topically applied RAL and HAFi twice a day to the forearm skin of elderly dermatoporosis patients. After 1 month of treatment, we observed a significant clinical improvement.. Our results indicate that (i) RAL-induced in vitro and in vivo keratinocyte proliferation is a CD44-dependent phenomenon and requires the presence of HA, HB-EGF, erbB1 and MMPs, (ii) RAL and HAFi show a synergy in vitro and in vivo in mouse skin, and (iii) the combination of RAL and HAFi seems to have an important therapeutic effect in dermatoporosis.

    Topics: Adult; Aged; Aged, 80 and over; Animals; Atrophy; Epidermis; ErbB Receptors; Female; Humans; Hyaluronan Receptors; Hyaluronic Acid; Hyperplasia; Keratinocytes; Male; Mice; Mice, Inbred DBA; Mice, Transgenic; Middle Aged; Retinaldehyde; Skin Diseases

2010
Metabolism and biological activities of topical 4-oxoretinoids in mouse skin.
    The Journal of investigative dermatology, 2008, Volume: 128, Issue:4

    Retinoic acid mediates most of the biological actions of vitamin A. It is oxidized by CYP26A1 to 4-oxoretinoic acid, considered as an inactive catabolite of retinoic acid. However, in the light of studies reporting the presence of 4-oxoretinal or 4-oxoretinol as the predominant retinoids during morphogenesis, we analyzed the retinoid-like biological activity of these oxoretinoids in mouse skin in vivo. Topical 4-oxoretinal and 4-oxoretinol promoted significant epidermal hyperplasia and metaplasia in mouse tail. They induced a moderate response for epidermal inflammation, compared with retinal, whereas neither 4-oxoretinal nor 4-oxoretinol prevented menadione-induced epidermal lipid peroxidation, unlike retinal and retinol. As analyzed by quantitative PCR, 4-oxoretinal and 4-oxoretinol did not reproduce the significant increased expression of genes coding for keratin 4, amphiregulin, heparin-EGF and CYP26A1, that did induce retinal and retinol. However, both retinal and 4-oxoretinal significantly inhibited the lipopolysaccharide-induced maturation of human dendritic cells in vitro. As analyzed in vivo and in vitro, 4-oxoretinal and 4-oxoretinol were not converted into retinoic acid. We conclude that 4-oxoretinal and 4-oxoretinol exert a moderate direct retinoid-like activity in vivo, thus confirming previous in vitro studies in amphibians showing 4-oxometabolites of vitamin A as bioactive agents rather than inactive catabolites.

    Topics: Animals; Dendritic Cells; Epidermis; Gene Expression; Humans; Hyperplasia; Lipid Peroxidation; Mice; Peroxidase; Retinaldehyde; Retinoids; Skin; Tail; Vitamin A

2008
Topical 9-cis-retinaldehyde for delivery of 9-cis-retinoic acid in mouse skin.
    Experimental dermatology, 1999, Volume: 8, Issue:3

    The 9-cis-retinoic acid (9cRA) is an endogenous ligand of retinoid X nuclear receptors (RXRs). Although the epidermis contains five times more RXRs than RARs, little is known on the activity of topical 9cRA. In order to circumvent surface isomerization of topically applied 9cRA into all-trans-retinoic acid (atRA), we used topical 9-cis-retinaldehyde (9cRAL) as a precursor of 9cRA, hypothesizing that keratinocytes would metabolize 9cRAL into 9-cis-retinoic acid (9cRA). Retinoid content was determined by HPLC analysis of mouse tail skin that had been washed after the application of 9cRAL (0.05% for 14 days) to evaluate the metabolites produced within the epidermis. Biologic activities of 9cRAL and atRAL were analysed by assessing hyperplastic and metaplastic responses, by determining epidermal thickness and the levels of mRNAs encoding for specific keratins. atRAL and derived retinoids were found in skin treated with either atRAL or 9cRAL. The metabolite pattern obtained with 9cRAL was similar to that obtained with atRAL except the presence in 9cRAL samples of an unidentified nonpolar metabolite. However, treatment with 9cRAL yielded higher atRAL and lower retinyl ester concentrations. The biologic activities (hyperplastic and metaplastic responses) resulting from topical application of 9cRAL were lower than those induced by atRAL or atRA at similar concentrations. Taken together, these data show that topical 9cRAL does not deliver significant amounts of 9cRA and exerts less biologic activity than atRAL. Contrary to atRAL, 9cRAL does not appear therefore as a pertinent candidate for topical use in humans.

    Topics: Administration, Topical; Alitretinoin; Animals; Gene Expression; Hyperplasia; Keratins; Metaplasia; Mice; Mice, Inbred C57BL; Retinaldehyde; Retinoids; RNA, Messenger; Skin; Stereoisomerism; Tail; Tretinoin

1999
Topical retinaldehyde increases skin content of retinoic acid and exerts biologic activity in mouse skin.
    The Journal of investigative dermatology, 1996, Volume: 107, Issue:5

    Retinaldehyde, a natural metabolite of beta-carotene and retinol, has been proposed recently for topical use in humans. Because retinaldehyde does not bind to retinoid nuclear receptors, its biologic activity should result from enzymatic transformation by epidermal keratinocytes into ligands for these receptors, such as all-trans retinoic acid and 9-cis-retinoic acid. In this study, we analyzed by high performance liquid chromatography the type and amounts of tissue retinoids as well as several biologic activities resulting from topical application of either retinaldehyde or all-trans retinoic acid on mouse tail skin. Biologic activities of all-trans retinoic acid and retinaldehyde were qualitatively identical in metaplastic parameters (induction of orthokeratosis, reduction of keratin 65-kDa mRNA, increase in filaggrin and loricrin mRNAs) and hyperplastic parameters (increase in epidermal thickness, increase in bromodeoxyuridine (BrdU)-positive cells, increase in keratin 50-kDa mRNA, and reduction in keratin 70-kDa mRNA). Some quantitative differences, not all in favor of all-trans retinoic acid, were found in several indices. Cellular retinoic acid-binding protein II and cellular retinol-binding protein I mRNAs were increased by both topical retinaldehyde and all-trans retinoic acid. Whereas all-trans retinoic acid, 9-cis-retinoic acid, and 13-cis-retinoic acid were not detectable (limit 5 ng/g) in vehicle-treated skin, 0.05% retinaldehyde-treated skin contained 13 +/- 6.9 ng/g wet tissue of all-trans retinoic acid (mean +/- SD), 12.6 +/- 5.9 ng/g 13-cis-retinoic acid, and no 9-cis-retinoic acid. In contrast, 9-cis-retinoic acid was detectable in 0.05% of all-trans retinoic acid-treated skin, which also contained 25-fold more all-trans retinoic acid and 5-fold more 13-cis-retinoic acid than retinaldehyde-treated skin. Our results show that topical retinaldehyde is transformed in vivo into all-trans retinoic acid by mouse epidermis. The small amounts of ligand for retinoic acid nuclear receptors thus produced are sufficient to induce biologic effects similar to those resulting from the topical application of the ligand itself in much higher concentration.

    Topics: Administration, Topical; Animals; Filaggrin Proteins; Hyperplasia; Keratins; Mice; Mice, Inbred C57BL; Receptors, Retinoic Acid; Retinaldehyde; Retinol-Binding Proteins; Retinol-Binding Proteins, Cellular; Skin; Tretinoin

1996